
Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 1

Creating Platform-Independent Interfaces with Java
Layout Managers

Type: Technical Session
Track: JBuilder

Author: Ted Faison, Faison Computing Inc.

Short Description

Java’s Layout Managers are the key to creating interfaces that work correctly on different platforms. Layout
Managers work hard to make your dialog boxes appear correct after being resized, or when the screen
resolution changes.

Abstract

Windows programmers often use dialog boxes in the user interfaces they develop. Creating dialog boxes
involves carefully laying out controls using a tool, such as Resource Workshop. Layouts that look right on one
system may look wrong on systems with different video resolutions. Java does away with the fixed layout
convention of dialog boxes, in favor of a dynamic technique that lays out controls at runtime, based on the
video resolution available. This paper discusses the new Java Layout Managers, showing how to get the most
out of them, and how to extend them to obtain custom layouts.

What is a Layout Manager?

Most GUI programs use dialog boxes to display a series of controls. We’re all familiar with the tedious process
of laying out the controls using tools like Resource Workshop or AppStudio. For a non-trivial dialog box, it
takes a lot of time to position the controls where they look best. When you’re finished coding the app, you give
it to the test people. You haven’t even gotten back to your office that the phone is ringing. The dialog box has
clipped text, and not all the controls are visible. Sound familiar? The problem, of course, is the way Windows
lays out dialog box controls, using those arcane dialog box units, The original idea was to lay out controls
based on the font size. The idea was good, since it took into consideration that layout on different systems was
an issue. The bad part was tying the layout policy to the font size.

The JavaSoft folks designed the Java AWT system to perform well on all platforms. Using font sizes as a
reference made almost as much sense as using the size of the tires of James Goslings’ car. The solution was to
create a small family of Layout Managers, that at runtime would go out and look at the size of a window and
lay each control out based on the amount of space available, the size of the control and the layout policy. A
layout manager is an object that helps an AWT container (such as java.awt.Frame) position its controls in
a manner that will look reasonable on any platform. Thus the burden of component positioning is shifted from
the developer to Java. Does that mean you can’t position controls exactly to the millimeter? Yes, for most
layout policies. The idea is that you, the developer, don’t know as much about the final appearance of your
windows as the layout manager, because you don’t know what the runtime platform looks like. The layout
manager is sitting right there, running on that platform, so it can make some pretty reasonable decisions.

Keep in mind that layout managers are there to help, not hinder. If you don’t specify any layout manager for a
window, then your components will stay exactly where you put them. Just remember that your window design

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 2

is tied to parameters of your design environment, so it will probably look wrong on machines with differing
resolution and font size.

Basic Concepts

In order to display Java components on the screen, you need a window to hold them. In Windows we usually
refer to this kind of window as the parent window. In Java, the window is just a component, but a special kind
that can hold multiple components inside it. Such components are called containers (not to be confused with
OOP containers like vectors and hash tables). The JDK defines a simple hierarchy of container classes, as
shown in Figure 1.

Component

Container

Panel

Applet

ScrollPane

Window

Dialog

Frame

Figure 1 - The hierarchy of Java containers.

All containers maintain a list of their child components. The order of the list defines their Z-order. Unless
otherwise specified, components are added at the end of the list, causing them to be displayed on top of the
components that precede them in the list. Layout managers can use this child list to gain access to a
container’s children. Layout managers are created in a container using code like this:

public class MyFrame extends java.awt.Frame {

 public MyFrame() {
 setLayout(new java.awt.BorderLayout());
 }
}

The layout manager is created without being passed a reference to the container to manage. For this reason,
every time the container needs to have the manager layout its children, it passes it a reference to itself, like
this:

public abstract class Container extends Component {
 //...
 public void layout() {
 LayoutManager layoutMgr = this.layoutMgr;
 if (layoutMgr != null)
 layoutMgr.layoutContainer(this);
 }
}

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 3

The layout method is normally called just before the container paints itself.

The Notion of Preferred Size

When you create a container with components embedded on it, you test its layout on your own development
platform. You would like the window to look the same on other platforms and video systems, and the AWT is
there to help you out. To do so, it needs a couple of bits of information. Every component has something called
the preferredSize. This is the size you would like your component to have, if at all possible. What is
possible will depend entirely on the configuration of the system your Java code is running on, and what layout
policy is in effect. Some layout managers keep components their preferred size. Others, like the
BorderLayout manager, change the dimensions of components, but use the preferred sizes as starting points.
A component positioned as a NORTH item under a BorderLayout policy will be given its preferred height,
but the width will be set to the width of the parent container. Layout managers look at the preferredSize
of each component being laid out, and follow the selected layout policy. The preferred size of a component is
set by overriding the preferredSize method like this:

public Dimension preferredSize() {
 return new Dimension(180, 120);
 }

You will normally override the preferredSize method only for containers, like Panels. Child controls, like
buttons and list boxes, have preferred sizes derived typically from the size of their peer components.

Layout Constraints

Laying out controls in a container is not always trivial. Layout managers are often faced with situations in
which there are several ways to accomplish a given task. You tell the manager exactly how you want it to
determine the layout using constraints, which are essentially attributes that you can assign values to.
Constraints always have default values, so you don’t have to access and set them unless you want a non-default
layout. Example: the BorderLayout manager puts components either along a border of a container, or in the
center. Choosing a BorderLayout policy by itself is not sufficient to get a button to be positioned along the
top border. You must specify a North constraint to achieve the desired results. Constraints are used by all
layout managers, but often the defaults are what you want, so you don’t need to change them. Constraints are
used to determine the spacing between components, the margin between components and the container border,
how to distribute left-over space, and so on. Most layout managers have simple constraints, since they support
only a limited number of options. The exception is GridBagLayout, which requires you to fully understand
constraints in general, and GridBagConstraints in particular.

The Built-in Layout Managers

There are several common types of layout used in applications, and the AWT contains layout managers for
them. The 4 basic managers are BorderLayout, CardLayout, FlowLayout and GridLayout. The fifth,
GridBagLayout, is a sort of catch-all manager and is considerably more complicated to use than the others.
The managers form a simple hierarchy, as shown in Figure 2.

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 4

Java.awt.LayoutManager java.io.Serializable

FlowLayout
GridLayout

LayoutManager2

BorderLayout
CardLayout
GridBagLayout

Figure 2 - The hierarchy of built-in Java Layout Managers.

All the built-in layout managers are serializable, meaning they know how to save and restore their internal
state. Saving and later restoring a panel that uses a built-in layout manager will recreate the layout that was
saved.

BorderLayout

This layout manager is widely used in Java programs, and lets you position a component relative to one of the
borders of the parent container, or in the center. The layout options are North, East, South and West for
border-relative components, and Center for components that occupy the remaining client area left over by
border-relative components. The layout options are strings. To create a child component that sticks to the top
border and has the same width as the parent component, you would use code like this:

add("North", new java.awt.Button());

To make a component occupy the client area of the parent, you give it the Center option, like this:

add("Center", new java.awt.List());

BorderLayout is the default policy for a number of Java containers, such as java.awt.Window and
java.awt.Frame. Delphi programmers are familiar with BorderLayout policies, because most Delphi
components have an Align property that lets you specify the layout option (None, Left, Top, Right,
Bottom, Client) at design time. The Delphi border alignment is slightly different from the Java
BorderLayout, because the former lets you “stack” objects against a border. For example if you add three
buttons with Top alignment, the first button will be attached to the top border, the second will be attached to
the bottom edge of the first, the third to the bottom edge of the second. The Java BorderLayout manager
doesn’t allow this. You can only align one component on any given border. If you added two North buttons,
the second would cover the first.

The following figure shows 5 buttons positioned using a BorderLayout policy. Notice how the components
maintain their relative position correctly after the parent window is resized.

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 5

Figure 3 – How a BorderLayout manager lays out controls in a resized window.

Here is the code that produced the window in Figure 3.

public class MyFrame extends java.awt.Frame {

 java.awt.BorderLayout borderLayout = new java.awt.BorderLayout();

 java.awt.Button button1 = new java.awt.Button();
 java.awt.Button button2 = new java.awt.Button();
 java.awt.Button button3 = new java.awt.Button();
 java.awt.Button button4 = new java.awt.Button();
 java.awt.Button button5 = new java.awt.Button();

 //Construct the frame
 public MyFrame() {

 this.setLayout(borderLayout);
 this.setTitle("MyFrame");

 button1.setLabel("North button");
 button2.setLabel("East button");
 button3.setLabel("South button");
 button4.setLabel("West button");
 button5.setLabel("Center button");

 add("North", button1);
 add("East", button2);
 add("South", button3);
 add("West", button4);
 add("Center", button5);
 }
}

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 6

CardLayout

Although the name may be a bit misleading, CardLayout managers are commonly used. They control the
visibility of different AWT containers that are kept in a sort of stack. To use a CardLayout, you create an
AWT container and assign the CardLayout to it, like this:

java.awt.Panel deckPanel = new java.awt.Panel();
java.awt.CardLayout cardLayout = new java.awt.CardLayout();
deckPanel.setLayout(cardLayout);

Then you fill the deck by creating AWT containers and adding them to the deck like this:

java.awt.Panel panel1 = new java.awt.Panel();
deckPanel.add("Card 1", panel1);

When you add a card, you also give it a string tag that you can use later to select that card. You can make a
specific card visible using the code

cardLayout.show(deckPanel, “Card 1”);

The first parameter is the container you want the CardLayout to work with. The second is the String tag of
the card you want to select. You can also show the first or last card in the deck, using the code

cardLayout.first(deckPanel);
cardLayout.last(deckPanel);

or just move forwards or backwards by one card with the code:

cardLayout.next(deckPanel);
cardLayout.previous(deckPanel);

The number of cards in the deck can be obtained using the code:

int cardCount = deckPanel.countComponents();

Basically a CardLayout achieves the same end as a Windows multi-page Property Sheet, except that no tabs
are displayed. The name CardLayout was chosen since the panels resemble a stack of playing cards.

The following code creates a 3-card panel controlled by a CardLayout manager. Each card has a button that
fills its client area, with a label denoting the card number. At the bottom is a panel containing buttons that let
you select which card is visible. You could easily change the example to show a list box in the bottom panel.
Each item in the list box could be associated with a different card.

public class MyFrame extends java.awt.Frame {

 // create the card deck with three page-control buttons
 java.awt.CardLayout cardLayout = new java.awt.CardLayout();
 java.awt.Panel deckPanel = new java.awt.Panel();
 java.awt.Panel buttonPanel = new java.awt.Panel();
 java.awt.Button buttonCard1 = new java.awt.Button();
 java.awt.Button buttonCard2 = new java.awt.Button();
 java.awt.Button buttonCard3 = new java.awt.Button();

 // create cards for the deck
 java.awt.Panel panel1 = new java.awt.Panel();
 java.awt.Button button1 = new java.awt.Button();

 java.awt.Panel panel2 = new java.awt.Panel();
 java.awt.Button button2 = new java.awt.Button();

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 7

 java.awt.Panel panel3 = new java.awt.Panel();
 java.awt.Button button3 = new java.awt.Button();

 //Construct the frame
 public MyFrame() {

 setLayout(new java.awt.BorderLayout());
 setTitle("MyFrame");

 deckPanel.setLayout(cardLayout);
 add("Center", deckPanel);
 add("South", buttonPanel);

 buttonPanel.setLayout(new java.awt.FlowLayout());

 buttonCard1.setLabel("Card 1");
 buttonPanel.add(buttonCard1);

 buttonCard2.setLabel("Card 2");
 buttonPanel.add(buttonCard2);

 buttonCard3.setLabel("Card 3");
 buttonPanel.add(buttonCard3);

 button1.setLabel("Card 1");
 panel1.setLayout(new java.awt.BorderLayout());
 panel1.add("Center", button1);
 deckPanel.add("Card 1", panel1);

 button2.setLabel("Card 2");
 panel2.setLayout(new java.awt.BorderLayout());
 panel2.add("Center", button2);
 deckPanel.add("Card 2", panel2);

 button3.setLabel("Card 3");
 panel3.setLayout(new java.awt.BorderLayout());
 panel3.add("Center", button3);
 deckPanel.add("Card 3", panel3);
 }

 public boolean action(java.awt.Event theEvent, Object theSource) {
 if (theEvent.target == buttonCard1)
 cardLayout.show(deckPanel, buttonCard1.getLabel());
 else if (theEvent.target == buttonCard2)
 cardLayout.show(deckPanel, buttonCard2.getLabel());
 else if (theEvent.target == buttonCard3)
 cardLayout.show(deckPanel, buttonCard3.getLabel());
 return true;
 }
}

The code produces the output shown in Figure 4, which shows the results of clicking the Card 1, the Card 2
and the Card 3 buttons.

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 8

Figure 4 - Using a CardLayout to switch between cards.

Although my example shows each card with a simple button, you can put as many components on each as you
need, with each card being completely independent of what is on the other cards. For example the 3 cards
might look like this:

Figure 5 - A deck of cards with differing components and layouts.

Each card in a CardLayout deck is a container – usually a java.awt.Panel or descendent. Other than
being part of the same deck, there is no other relationship between the cards in a deck. They may each have
there own (different) layout manager, so card 1 might use FlowLayout, card 2 CardLayout and card 3 a
custom layout.

FlowLayout

This is the default layout policy for java.awt.Panel components. This manager lays the components of
a container out in flow order. Starting from the top of the container, the controls are positioned from left to
right in rows. When there is not enough space to display the next component, the manager moves below the
first row of components and continues the flow. The process repeats until all components have been
positioned. Components may be clipped from display if they fall off the end of the parent container. The
controls on each row are centered horizontally by default. You can also have the layout manager left- or right-

A – Card1 B – Card 2 C – Card 3

A – Card 1 B – Card 2 C – Card 3

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 9

align components by passing the values FlowLayout.LEFT or FlowLayout.RIGHT to the class constructor.
The following figures show how components are positioned, based on the space available.

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 10

Figure 6 - How a FlowLayout policy positions controls based on the space available.

The figure shows a list box followed by 3 buttons. When the manager runs out of room, as shown in the Figure
6.B, the manager moves down to the next row. This row starts below the lowest component in the previous
row. Notice how the components in all the rows are horizontally centered, because the code didn’t specify an
alignment mode. Figure 6.F shows the result of components falling off the end. There is no indication in the
parent frame that some of its children were clipped.

Here is the code that produced the frame window shown in Figure 6.

public class MyFrame extends java.awt.Frame {

 java.awt.FlowLayout flowLayout = new java.awt.FlowLayout();
 java.awt.List list1 = new java.awt.List();
 java.awt.Button button1 = new java.awt.Button();
 java.awt.Button button2 = new java.awt.Button();
 java.awt.Button button3 = new java.awt.Button();

public MyFrame() {

 this.setLayout(flowLayout);
 this.setTitle("MyFrame");
 button1.setLabel("button1");
 button2.setLabel("button2");
 button3.setLabel("button3");
 add(list1);
 add(button1);
 add(button2);
 add(button3);
 }
}

A B

C D E F

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 11

GridLayout

There are times when you have a form that needs to lay items out by row and column, such as when displaying
a calendar. In these cases you want to be able to specify in advance the number of columns in each row,
because your data makes sense only when shown with the given number of columns. A FlowLayout won’t
suffice, because the layout manager will place whatever components it can fit on each row, based on the
window width. A GridLayout manager solves this type of problem with ease. When you create a
GridLayout, you tell it the number of rows and columns you want, like this:

GridLayout myGrid = new GridLayout(3, 7);

Where the first parameter is the number of rows, the second the columns. Using these two numbers, the layout
manager divides the area available of the window it is handling into equal-sized cells. Figure 7 shows two
frames laid out by a GridLayout.

Figure 7 - A 7 by 3 grid of buttons.

Because a GridLayout makes all the cells the same size, there is a possibility of left over space on the right
and bottom borders. The space corresponds to the remainder you get when you divide the window width by the
number of columns, and conversely for the rows. Figure 7.B shows a grid with some left-over space. If left-
over space is unacceptable, you can snap the window size to the correct size by overriding the
java.awt.Container.layout method and computing the nearest allowable width and height, like this:

public void layout() {
 Dimension d = getSize();
 Insets insets = insets();
 int xMargins = insets.left + insets.right;
 int yMargins = insets.top + insets.bottom;
 int width = (int) ((d.width - xMargins) / 7) * 7 + xMargins;
 int height = (int) ((d.height - yMargins) / 3) * 3 + yMargins;
 resize(width, height);
 super.layout();
}

Here is the code used to create Figure 7.

public class MyFrame extends java.awt.Frame {

 public MyFrame() {

 setLayout(new java.awt.GridLayout(3, 7));
 setTitle("MyFrame");

A – No left over space B – A grid with some left-over space

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 12

 add(new java.awt.Button("Sun"));
 add(new java.awt.Button("Mon"));
 add(new java.awt.Button("Tue"));
 add(new java.awt.Button("Wed"));
 add(new java.awt.Button("Thu"));
 add(new java.awt.Button("Fri"));
 add(new java.awt.Button("Sat"));

 for (int i = 0; i < 14; i++)
 add(new java.awt.Button());
 }

 public boolean handleEvent(java.awt.Event theEvent) {
 if (theEvent.id == java.awt.Event.WINDOW_DESTROY)
 System.exit(0);
 return false;
 }
}

When laying out the cell components in the grid, the GridLayout manager ignores the preferred sizes of the
components. All the cells are the same size, and the size depends only on the parent window size and the
number of cells.

GridBagLayout

The AWT designers provided simple classes to support the most common layout policies. When you have a
layout that can’t be handled using the conventional managers discussed so far, you have only two options:
create your own manager or use GridBagLayout. A lot of programmers get confused by GridBagLayout
and would almost prefer creating their own manager rather than use it. Although this manager is definitely
more complex than the others, with a little practice you can get the hang of what it’s doing and how to control
it.

Because GridBagLayout is intended to be very flexible, it requires a lot of options to work. You tell it those
options using a full-fledged GridBagConstraints object that has the following fields.

Field Description

anchor This option is used when the size of a component is smaller than the grid cell created
for it. It tells the layout manager which corner, point or border you want the
component positioned by. The default is CENTER, meaning the component is centered
vertically and horizontally inside the cell. Possible values are NORTH, NORTHEAST,
EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, NORTHWEST and CENTER. Choosing a
corner like NORTHWEST places the component’s top left corner on that point. Choosing
a border, like NORTH, causes the component to be placed on the top edge of the
bounding cell and centered horizontally in the cell

fill This option tells the manager how you want the component to fill its grid cell if the
cell size is different from the component’s preferred size. For example if the
component is wider than the cell, you can make the manager shrink the component
horizontally to the exact cell size using the option HORIZONTAL. If the component
were narrower than the cell, the manager would expand it. In either case, the vertical
size wouldn’t be affected. The VERTICAL options causes resizing in the vertical
direction. The value NONE causes the component size to be left alone. If the component
is smaller than the cell, empty space is left around it. If the component is larger than
the cell, it is clipped. Using the option BOTH causes the manager to resize the

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 13

component to fit exactly in the cell. See Figure 8 for examples.

gridwidth
gridheight

These two options can be a bit confusing, possibly because of their names. Maybe
numberOfCellsX and numberOfCellsY would have been better choices. These
options control the number of grid cells a given component occupies. The
GridBagLayout manager lays out a rectangular area divided into cells. By default
each component occupies a single cell. Setting gridWidth and gridHeight to 2 or
higher will cause the associated component to spread over 2 or more cells in the X or
Y direction. The default value is 1. Two other important values you can use are
RELATIVE, which makes a component the next-to-last item in its row or column, and
REMAINDER, which makes the component the last item in its row or column. See
Figure 9 for examples.

gridx
gridy

The cells in a grid are numbered. The leftmost cell in a row has gridx = 0. The cell
at the beginning (top) of a column has gridy = 0. As the GridBagLayout manager
is laying out cells, it assigns items to cells, based on the options you set. You can also
force an item to be in a particular row or column by setting gridx/gridy. The default
value is RELATIVE, but assigning a non-negative value to it tells the layout manager
you want an item in a specific place. See Figure 10 for examples.

insets Insets are the space the layout manager places around each component in its cell.
Adding an inset doesn’t make a component smaller: it makes the cell larger. The
default insets are Insets(0, 0, 0, 0). The parameters specify the margin for the
top, left, bottom and right borders. See Figure 11 for examples.

ipadx
ipady

You can make individual components larger by padding them. Padding makes the
layout manager add space in the x or y direction. See Figure 12 for examples.

weightx
weighty

Determines how space is allocated to rows and columns. For rows/columns with 0
weight, the manager makes cells based on their preferred sizes. For larger weights, the
manager adds space using a simple algorithm. It computes the ratio of the cell’s weight
to the sum of all the weights in the same row and column. Cells with higher weights
will get more space than other cells. See Figure 14 for examples.

Table 1 - The fields of GridBagConstraints.

You specify the layout constraints when you add a component to a container, using code like this:

GridBagLayout layout = new GridBagLayout();
GridBagConstraints constraints = new GridBagConstraints();
Button button = new Button("Label");
constraints.weightx = 1;
constraints.gridwidth = GridBagConstraints.REMAINDER;
layout.setConstraints(button, constraints);
add(button);

The following figure shows how the fill option affects the layout of components.

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 14

Figure 8 - The effect of changing the fill option.

In Figure 8, the weightx/weighty options were set to 1, to better show the grid cell sizes. The next figure
shows how the gridwidth and gridheight options affect the layout.

Figure 9 - The effect of changing the gridheight option.

In Figure 9 the weightx and weighty options were set to 1. The fill was set to BOTH.

A
fill = NONE

B
fill = VERTICAL

C
fill = HORIZONTAL

D
fill = BOTH

A
All gridheights = 1

B
Button 1:

gridheight = 2

C
Button 1:

gridheight >= 3

D
Button 2:

gridheight = 2

E
Button 2:

gridheight = 3

E
Button 1 & 2:

gridheight = 3

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 15

The next figure shows how the layout is affected by the gridx and gridy options.

Figure 10 - The effect of changing the gridx of button 4.

In Figure 10, the component fill constraints are set to BOTH, to better show the grid cell sizes. Figure 10.A
shows a series of buttons laid out using the default gridx option, which is GridBagOptions.RELATIVE.
Figure 10.B shows how button 4 is positioned after setting its gridx option to 0. Notice that the layout
manager placed it on the next row. When you specify a grid value that is smaller than the current cell, the
layout manager places the item on the next row or column. Figure 10.D shows button 4 with a gridx value of
3. Setting the gridx value of an item to a value greater than or equal to the current cell makes the manager
place the item on the current row, as shown in Figure 10.D.

The next figure shows how the inset option affects the layout.

Figure 11 - The effect of changing a component's insets.

In Figure 11, the component fill constraints are set to BOTH, to better show the grid cell sizes. Because the
values of an inset contribute toward cell size, changing one component’s insets can affect the size of other
components on the same row or column. Just by looking at Figure 11.C, it is hard to imagine that it differs
from Figure 11.A only in the value of a single cell inset.

A
gridx = RELATIVE

B
button 4: gridx = 0

C
Button 4: gridx = 2

D
Button 4: gridx > 2

B
Button 2:

Insets(5, 10, 15, 20)

A
Button 2:

Insets(0, 0, 0, 0)

C
Button 2:

Insets(50, 100, 0, 0)

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 16

The two GridBagConstaints options ipadx and ipady can be used to increase the size of component cells.
If you set the fill option to BOTH, the components are inflated to fill the cell, making the cell size visible.
Figure 12 shows 3 buttons using different padding values. The next figure shows how the ipadx and ipady
options affect the layout.

Figure 12 - The effect of changing ipadx/ipady.

To make the cell size visible, the fill option in Figure 12 was set to BOTH.

As for insets, padding a cell on one row can affect other cells on the same row or column, as shown in the next
figure.

Figure 13 - How changing the padding of one row can affect other rows.

The components on the first row have x and y padding of 30. The component on the second row has x and y
padding of 0. All components have fill set to BOTH, to make the cell size obvious. Because the first row sets
x padding to 30, all cells in the first column will be at least as wide. The cell on the second row would have
been narrower, had no padding been applied to the cell above it.

A
ipadx = ipady = 0

B
ipadx = 30

C
ipadx = ipady = 30

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 17

The next figure shows how the layout is affected by changing weightx and weighty.

Figure 14 - The effect of the weightx/weighty GridBagConstraints options.

In Figure 14, the component fill constraints are set to BOTH, to better show the grid cell sizes. As you can
see, changing weights can have a great effect on the layout.

A
All rows: weights = 0

B
All rows: weightx = 1

C
All rows: weighty = 1

D
All rows: weights = 1

E
Row 2: weighty = 1

F
Row 2: Both weights = 1

G
Row 2 weighty = 1
Row 3 weighty = 1

H
Row 2 weighty = 1
Row 3 weighty = 3

I
Row 2 weighty = 1
Row 3 weighty = 5

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 18

Rolling your own manager

It’s crunch time. You have this really cool layout, but can’t seem to support it with one of the built-in
managers. Playing with GridBagLayout doesn’t quite get what you want. Before going to the effort of
creating a brand new layout manager of your own, you should investigate whether a series of nested panels
will solve the problem. Assuming it doesn’t, it’s coding time.

The first step is to implement the java.awt.LayoutManager interface and implement its 5 basic methods,
like this:

public class MyLayoutManager implements java.awt.LayoutManager {

 public void addLayoutComponent(String theString, Component theComponent) {}
 public void removeLayoutComponent(Component theComponent) {}
 public Dimension preferredLayoutSize(Container theContainer) {}
 public Dimension minimumLayoutSize(Container theContainer) {}
 public void layoutContainer(Container theContainer) {}
}

You may or not want to also implement the java.io.Serializable interface to make your layout manager
persistent. The next step is to decide how to code the 5 methods. Obviously that will depend on the type of
layout policy you need. Let’s say you want a manager that always lays components out vertically, like this:

Figure 15 - Laying components out vertically with a custom layout manager.

The first two methods, addLayoutComponent and removeLayoutComponent are used if you want to use
your own fields to store the objects added to a layout. This is often not necessary, because a layout manager
can get the list of components from the container that calls layoutContainer. You may want to keep your
own list if you have a special parameters that control layout. For example, a BorderLayout uses the
parameters “NORTH”, “EAST”, “SOUTH”, “WEST” and “CENTER” to position components and uses a separate
field to store components for each border. Your layout manager can use any strings it wants as options,
including empty strings. Class BorderLayout implements addLayoutComponent like this:

public void addLayoutComponent(String name, Component comp) {

/* Special case: treat null the same as "Center". */
if (name == null) {
 name = "Center";
}

/* Assign the component to one of the known regions of the layout.
 */
if ("Center".equals(name)) {
 center = comp;
} else if ("North".equals(name)) {
 north = comp;
} else if ("South".equals(name)) {
 south = comp;

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 19

} else if ("East".equals(name)) {
 east = comp;
} else if ("West".equals(name)) {
 west = comp;
} else {
 throw new IllegalArgumentException("cannot add to layout: “ +

 “unknown constraint: " + name);
}

 }

My simple vertical layout manager will use no placement strings, so it will not override
addLayoutComponent or removeLayoutComponent.

The two methods minimumLayoutSize and preferredLayoutSize calculate the minimum and ideal size
of the container. For my simple example, the minimum size is the greatest of the minimum sizes of the
components, plus the parent container’s insets. The preferred size is the greatest of the preferred sizes of the
components, plus the parent container’s insets.

The bulk of the work in any layout manager is typically in the layoutContainer method.
MyLayoutManager simply positions each component so the left side in indented by the container’s left inset.
The size is set so the right edge of each component extends to the right border of the container minus the right
inset. The layout manager maintains the preferred heights of all the components. The implementation of
MyLayoutManager looks like this:

import java.awt.*;

class MyLayoutManager implements LayoutManager{

 public void addLayoutComponent(String theString, Component theComponent) {}
 public void removeLayoutComponent(Component theComponent) {}

 public Dimension preferredLayoutSize(Container theContainer) {

 int width = 0;
 int height = 0;
 int componentCount = theContainer.countComponents();
 Insets insets = theContainer.insets();

 for (int i = 0; i < componentCount-1; i++) {
 Component component = theContainer.getComponent(i);
 width = Math.max(width, component.preferredSize().width);
 height += component.preferredSize().height;
 }

 return new Dimension(insets.left + width + insets.right,
 insets.top + height + insets.bottom);
 }

 public Dimension minimumLayoutSize(Container theContainer) {
 int width = 0;
 int height = 0;
 int componentCount = theContainer.countComponents();
 Insets insets = theContainer.insets();

 for (int i = 0; i < componentCount-1; i++) {
 Component component = theContainer.getComponent(i);
 width = Math.max(width, component.minimumSize().width);
 height += component.minimumSize().height;
 }

 return new Dimension(insets.left + width + insets.right,
 insets.top + height + insets.bottom);
 }

Creating Platform-Independent Interfaces with Java Layout Managers Ted Faison

8th Annual Borland Developers Conference - 1997 Page 20

 public void layoutContainer(Container theContainer) {

 Insets insets = theContainer.insets();
 int x = insets.left;
 int y = insets.top;
 int width = theContainer.size().width - insets.left - insets.right;

 for (int i = 0; i < theContainer.countComponents(); i++) {
 Component component = theContainer.getComponent(i);
 int height = component.preferredSize().height;
 component.reshape(x, y, width, height);
 y += height;
 }
 }
}

The manager is quite simple, but still useful. Of course a vertical layout could have been achieved using a
GridBagLayout, but I wanted to keep the layout policy simple to keep the discussion focused. If your layout
manager has any fields that aren’t initialized in the constructor, you should seriously consider making the
class Serializable, so you can save and restore the class from persistent storage.

Conclusion

Often Windows programmers find layout managers to be a initially something of a nuisance. Instead of just
dropping controls on a form, you have to set up a certain amount of infrastructure required by layout
managers. After some experience with the AWT, programmers come to realize the importance of centralized
layout policies. Under Windows, dialog boxes are generally not resizable, because controls are laid out in a
static pre-arranged order. If you enlarge a dialog box, you just get empty space along the right and bottom
borders. If you shrink one, you clip off some of the controls. With Windows, laying out components in a
parent-window-size-dependent manner requires lots of coding and many applications devote pages of code just
to solve layout problems.

Layout managers take the pain out of delivering platform-independent interfaces. Even a complicated layout
can often be created using nested panels, each with its own layout manager. Layout managers allow users to
resize forms while preserving spatial relationships between the components on them. Because layout is a
mundane and essential issue in user interfaces, the AWT provides built-in layout managers that solve most of
the presentation situations applications deal with. The built-in managers were designed to be extensible with
little coding. Creating your own layout manager is as simple as implementing 5 methods in a custom layout
class. Layout managers centralize the code that deals with dynamic positioning and sizing of components,
allowing you to focus on the particular task at hand. Hopefully layout managers will help you not only develop
better user interfaces, but using less code, with the bonus that they will look good on any machine.

