
Using VDBT Components Ted Faison 96/4/23 page 1

Database Applications with VDBT Components
Ted Faison

96/4/23

Developing database applications has always been a very slow process, hindered by a myriad of
low-level details imposed by the underlying database management system (DBMS). Recognizing
this, Borland developed a new set of programming tools that make much of the development
process visual. Programmers develop database user interfaces by creating windows, dropping
visual components on them, and setting a number of properties. The new collection of
components and tools created to support this programming style is known as Visual Database
Tools (VDBT), and was initially developed for Borland Delphi using ObjectPascal. The VDBT
components have now been ported to C++, bringing a new level of functionality to C++
programmers. This paper will discuss the architecture of VDBT components, showing how they
are used in C++ applications.

Live Data

An important goal in rapid application development is to detect problems in screen layout and
errors in database queries as soon as possible. Most database development environments
require you to write code to pull data out of tables and populate dialog box fields. To see if your
code is producing the desired results, you are compelled to go through a time-consuming
process of edit-compile-link. Not with Borland C++ 5.0. The new VDBT components support the
concept of live-data. When you place a VDBT control on a dialog box and set its database
connection properties, you can use the Test Dialog command on the Dialog menu to see live
data immediately. You can see how an entire form will appear to the user at runtime, allowing
you to make corrections in the layout or database queries before you even compile your code.
Queries can be used to produce complex result sets using table joins. The ability to test queries
interactively enables you to switch your database development into high gear.

The Borland Database Engine

At the heart of VBDT is a database engine known as the Borland Database Engine (BDE), a DLL
that sits between your database application and the DBMS. Your application’s VDBT controls
make calls to BDE in a database-independent manner. The BDE makes calls into DBMS-specific
drivers, which translate them into DBMS calls, returning data to your application. The VDBT
controls have no knowledge of the low-level DBMS calls needed to carry out a given task. The
BDE plays a role equivalent to Microsoft’s ODBC Driver Manager, insulating applications from
low-level database issues, providing additional features to enhance performance, such as
caching and cursor support. Using BDE you can access all standard desktop databases, ODBC
data sources and client/server SQL databases. The overall relationship between your application
and BDE is shown in Figure 1.

Using VDBT Components Ted Faison 96/4/23 page 2

Figure 1 - The overall architecture of an application using BDE.

When you add VDBT controls to an application, the connection to BDE is automatic, and no
programming is necessary. The process is entirely visual. At runtime, VDBT loads BDE and
makes the necessary queries to obtain the data indicated by the properties of each VDBT control
you use.

A New Visual Development Environment

From an application developer’s perspective, all database connectivity is handled by placing
VDBT tools on a dialog box, using the new Borland C++ Resource Editor, formerly known as
Resource Workshop. The old Resource Workshop has been entirely integrated into the Borland
C++ IDE, allowing seamless development of Windows resources and C++ code. Double clicking
an RC node in the Project Window launches the Resource Editor, appearing as in Figure 2.

Figure 2 - The new Integrated Resource Editor.

VDBT Application

Borland Database Engine DLL

Local BDE Data Sources Remote Data Sources

Paradox
dBase
Text files

Oracle
SQL Server
InterBase
DB2
Ingres
etc.

Access
FoxPro
Btrieve
Excel
etc.

SQL Links ODBC Driver Manager
Application
Space

DBMS
Space

Using VDBT Components Ted Faison 96/4/23 page 3

Double-clicking a resource launches a resource-specific editor. Figure 3 shows the Dialog Editor
running on the dialog resource IDD_FISHFACT.

Figure 3 - The Integrated Dialog Resource Editor.

The dialog box shown contains a number of VDBT controls, such as a TDBImage, a TDBText and
a TDBGrid. The tool palette contains pages of controls, and the VDBT controls are carried on two
of the pages. By dropping the appropriate controls on a dialog, a database application can be
created, often requiring little or even no programming.

Using VDBT Components Ted Faison 96/4/23 page 4

The VDBT Controls

To make visual programming possible, it is obvious there is a lot going on behind the scenes. All
VDBT controls are divided into 2 categories: data access controls and data-aware controls. The
former handle the retrieval and manipulation of database data, the latter handle the presentation
of data to the user. Figure 4 shows the overall grouping of the VDBT controls.

Figure 4 - The VDBT Controls.

VDBT controls are used in a standard way: You start with a control that manages the data set
you want to work with. This control will usually be either a TTable, for the entire table or a
TQuery, for a query. After placing a TTable on a dialog box, you setup its DatabaseName,
TableName and Active properties. Figure 5 shows the Property Inspector associated with a
TTable object.

TDBText

Data-Aware Controls

Data Access Controls

TTable

TDBRadioGroup TDBLookupComboTDBNavigatorTDBMemo

TDBLookupList

TDBListBox

TDBImageTDBEdit TDBCheckBox

TQuery TStoredProc TDataSource TDatabase TBatchMove

Using VDBT Components Ted Faison 96/4/23 page 5

Figure 5 - The Property Inspector for a TTable object.

Next you place a TDataSource control on the dialog box, and set its DataSet property to the
TTable or TQuery component. Now you add the data-aware controls, setting their DataSource
property to the TDataSource component and setting up the DataField property. No coding
required. The following figure shows the relationship between the various parts, using a TDBText
control. To see live data, choose Dialog | Test Dialog from the main menu.

Figure 6 - The hierarchy of VDBT components.

BDE

TTable

TDataSource

TDBText

Database

Displays text on the screen, at the location specified by the
user, with the font and style requested.

Handles transfer of data between result set and screen controls.

Stores and manages a result set containing all the records in
the database. Manages a scrollable cursor on the result set.

Insulates the application from database dependencies

Using VDBT Components Ted Faison 96/4/23 page 6

The following table describes the function of each of the VDBT data-aware controls.

Control Description

TDBText Displays simple text as static text. Doesn’t allow users to change the
text.

TDBEdit Displays text in an edit box. Users can change text only if the
database is not in ReadOnly mode, and they have update privileges
on the database,

TDBRadioGroup Displays a group box containing an array of radio buttons. Each radio
button is associated with a value. Used for displaying enumerations,
such as Pizza, Beer, Milk Shake for the values 0, 1, 2.

TDBCheckBox Displays a normal checkbox, which is checked if the database field is
non-zero, unchecked otherwise.

TDBMemo Displays a multi-line edit control. Can manage up to 64 KB of text,
unless the database has a lower limit.

TDBImage Displays a picture stored as graphic data in the database. TDBImage
can display BMP data formats.

TDBNavigator Manages the scrollable cursor attached to a result set. All data-aware
controls display fields obtained from the current record, which is the
record in the result set on which the cursor is sitting. A TDBNavigator
appears as a series of VCR-style controls.

TDBGrid Appears as a spreadsheet containing multiple columns. By default a
TDBGrid displays columns for all fields in the result set, but you can
eliminate columns and rearrange them on the screen as necessary.
By default, column titles match the database fields, but you can
change them to anything you want.

TDBListBox Displays a listbox of fixed selections. When the user makes a
selection, the text is written to the database. Useful when the number
of selections is large, and a TDBRadioGroup would need too many
radio buttons to accomplish the same task.

TDBLookupList Similar to a TDBListBox, except the listbox items are not fixed, but
looked up in a database at runtime. You attach a separate
DataSource object to govern how the lookup works.

TDBLookupCombo Similar to a TDBLookupList, except the data is presented in a combo
box.

Table 1 - The VDBT data-aware controls.

The next table describes the VDBT data access controls.

Control Description

TTable Makes direct calls into the BDE DLL. Creates and manages a result
set containing all the records in the attached database table.

TQuery Similar to a TTable, except the result set contains records that satisfy
the SQL SELECT statement attached to the control.

TStoredProc Similar to a TTable, except the result set is built using records
returned by a given stored procedure. The name of the stored
procedure is set using the property StoredProcName. Not all
databases support the use of stored procedures, which are pre-
compiled SQL procedures normally stored on the server side of a
client/server DBMS.

Using VDBT Components Ted Faison 96/4/23 page 7

TDataSource Manages the transfer of data into and out of individual fields in the
result set of an attached TTable, TQuery or TStoredProc result set.

TDatabase A low-level encapsulation of a generic database. You use a
TDatabase when you want to manipulate items that are at the
database, not the table, level. For example, to issue commit or
rollback commands you need to use a TDatabase. Use a TDatabase
to create a temporary local Alias to a database.

TBatchMove This component is used generally to support database administrator
tools that require copying result sets, or even entire databases, from
one place to another. You specify a source result set and a destination
table. The destination is created if necessary.

Table 2 - The VDBT data-access components.

Handling VDBT Controls at runtime

Internally, the VDBT controls are implemented as VBX controls. This allows them to offer design-
time features, and work at runtime as resources requiring no C++ code. You can manipulate the
VDBT controls at runtime by adding the appropriate C++ object to your code. For example, to
directly manipulate a TDBText control you added to the dialog TMyDialog in the Resource
Editor, you would first add a data member to TMyDialog, like this:

class TMyDialog : public TDialog, public TVbxEventHandler {
protected:

TDBText* myDBTextControl;
 // …

};

Objects of type TVbxControl are used to create C++ encapsulations of VBX controls, allowing
you to use C++ notation to interface with the underlying controls. Because VDBT controls are
VBX controls, any dialog that uses them must have TVbxEventHandler as a base class. Having
declared a pointer to the VDBT control, you actually instantiate the control in the constructor
body of the parent dialog box, like any other VBX control:

TTestDialog::TTestDialog(TWindow* parent, const char* name, TModule* module)
 : TDialog(parent, name, module)
{
 myDBTextControl = new TDBText(this, IDC_MYTEXTID);
}

The code assumes you gave the TDBText control the ID IDC_MYTEXTID in the Resource Editor.
You don’t need to delete the controls in the dialog destructor, since OWL takes care of that for
you. To manipulate the TDBText control you use standard OWL VBX notation. For example, to
change the text’s font size to 14, you would use the code:

myDBTextControl-> FontSize = 14;

The property name is the same as the one shown in the Property Inspector. To get the value of
the font size, you would use the code:

int fontSize = myDBTextControl->FontSize;

Using VDBT Components Ted Faison 96/4/23 page 8

Handling VDBT Control Events

Most Windows controls have the ability to generate notification messages, and VDBT controls
are no different. When the user does something to a control, that control will often fire off a
notification message to the parent dialog. For example, when the user edits the data in a
TDBEdit control, an OnChange event is fired. To handle it, you setup a VBX notification handler.
First you declare the handler:

class TMyDialog : public TDialog, public TVbxEventHandler {
protected:
 TDBEdit *MyDBEdit;
 void ChangeHandler(TDBEditNotifySink& Sink, TDBEdit& Sender);
 TDBEditNotifySink ChangeSink;
// …

};

then you modify the dialog constructor to initialize the event sink and link the event source with
the event sink:

TMyDialog::TMyDialog(TWindow* parent, const char* name, TModule* module)
 : TDialog(parent, name, module)
 , MyDBEdit(new TDBEdit(this, IDC_MYEDITID))
 , ChangeSink(TDBEditNotify_MFUNCTOR(*this, &TMyDialog::ChangeHandler))
{
 MyDBEdit->OnChangeSource += OnEditChangeSink; // Attach Sink to Source
}

and finally you write the body of the handler:

void TMyDialog::ChangedHandler(TDBEditNotifySink& Sink, TDBEdit& Sender)
{
 // do something
 MessageBeep(0);
 Sink.Pass(Sender); // Foreward the event to next handler (optional)
}

The list of possible notifications is available for each control in the online help.

Handling complex queries

TTable objects are used to obtain all the records in a table. Most non-trivial database
applications work with a subset of all the possible records, using queries. Joins are typically used
to get results from multiple tables simultaneously. The VDBT TQuery Component supports this
kind of functionality. By setting its SQL property, you can specify an arbitrarily complex SQL
SELECT statement. The limits in complexity are generally a function of the underlying database
drivers and DBMS, rather than of the VDBT components.

It is easy to create joins using a TQuery component. The returned result set can be handled with
the same simplicity as a TTable result set. As an example of a join, you might use a SQL
expression like this:

select Customer.Company, Orders.OrderNo, Orders.SaleDate
 from Customer, Orders
 where Customer.CustNo = Orders.CustNo

You can also produce updateable joins by setting the RequestLive property of TQuery to True.
Users must obviously have sufficient database access privileges to update database records.

Using VDBT Components Ted Faison 96/4/23 page 9

ODBC Support

The BDE has built-in support for common desktop databases, such as Paradox and dBase, and
native access to SQL servers such as InterBase, Oracle, Sybase and Microsoft SQL Server. To
access ODBC data sources, such as a Microsoft Access database, you must first create an
ODBC Data Source for it, then use the BDE Configuration Utility to create an ODBC
connection to that data source. The main window of the BDE Configuration Utility is shown in
Figure 7.

Figure 7 - The main window of the BDE Configuration Utility.

By clicking the New ODBC Driver button, the Add ODBC Driver dialog is displayed, as shown
in Figure 8.

Using VDBT Components Ted Faison 96/4/23 page 10

Figure 8 - The BDE Configuration Utility's dialog box for adding a link to an ODBC data
source.

Using the Aliases page in the BDE Configuration Utility, click the New Alias button to access
the Add New Alias dialog box. Create a new alias. From the Alias Type dropdown list, select
the ODBC driver you just added. You later use this name as the database name in the
DatabaseName property of TTable or TQuery components. The Default ODBC Driver field is
set to specify the type of database associated with the given ODBC data source. The Default
Data Source Name is the ODBC Data Source name assigned to the data source using the
Microsoft ODBC Administrator utility.

Client/Server Database Support

Using VDBT controls, you gain automatic access to all the popular desktop databases, either
directly, through IDAPI drivers, or through ODBC drivers. But corporate developers often require
database power that exceeds the capabilities of products like Paradox, Access or dBase. VDBT
components also allow you to develop applications for large client/server database systems like
Oracle, Informix, Sybase SQL Server, Microsoft SQL Server and others, without affecting your
application source code. As described earlier, your application uses VDBT controls, which talk to
the BDE, which dispatches your requests to a driver that handles a specific database. Using the
BDE Configuration Utility, shown in Figure 7, you setup a database type using the Driver
Name list. The Parameters pane shows the bindings and settings used by BDE. All entries have
defaults, but you can change items to suit your specific needs. For example, assume you install
version 7.3 of Oracle on your system. The BDE may have been configured to use the older 7.2
drivers. Using the BDE Configuration Utility, you can easily specify your new drivers, and
nothing in your application is affected at all.

Because BDE offers local caching, it has the capability to let your applications run even faster
than if you had used direct database-dependent SQL calls. The BDE uses the Borland SQL
Links DLL to interface with the client-side drivers provided by SQL database vendors. SQL
Links completely insulates the BDE from dependencies on networking or driver DLL
idiosyncrasies. Whether your client/server networking uses a Windows NT network, Novell or
TCP/IP, it makes no difference to you. It is only SQL Links that talks to the client-side driver of
your DBMS, and only this driver has anything to do with the network. This degree of insulation

Using VDBT Components Ted Faison 96/4/23 page 11

between application code and DBMS makes it easy to develop client/server systems initially
using a local server. After debugging the system, you can then deploy the full client/server
system by simply changing a few database parameters.

Conclusion

If you develop any kind of database applications using C++, version 5.0 of the Borland C++
compiler will definitely turbo-charge your work. Simple database user interfaces can be built
visually in a matter of hours or even minutes. Complex systems requiring queries are just as
easy. Applications requiring queries with variable parameters are still much easier with the VDBT
components than ever before. Because everything has evolved to a visual environment, almost
everything you do will be easier to accomplish and take less time.

The simple hierarchy of the VDBT components allows you to programmatically make changes to
the system at any level. You can control the low level database using a TDatabase object.
Individual tables can be manipulated using TTable objects. The ability to handle complex
queries and updateable joins is a really powerful feature of Borland C++ 5.0, allowing you to
develop arbitrarily complex database applications. Advanced features in the Borland Database
Engine – such as enhanced record locking, local caching and cursors – ensure your applications
achieve outstanding performance levels.

