
ObjectScripting Ted Faison 96/4/25 page 1

Borland C++ 5.0 ObjectScripting
Ted Faison

96/4/25

The Borland C++ 5.0 IDE is a rich workspace, supporting multiple windows, toolbars, editors and
installable tools. Previous versions of the IDE allowed programmers to customize the IDE in a
limited way, by allowing you to select which buttons were on the toolbar and letting you install
external commands that were invoked through the Tool menu. Users could also choose editors
that emulated popular programs like WordStar, Brief and Epsilon. This wasn’t enough, so we
added the capability to fully customize the editor using key scripts. Our customers wanted more:
the ability to control syntax highlighting, hooks into the debugger, control over the editor. The list
just kept growing, and the only way to satisfy everyone was to create a way to customize the
entire IDE in a programmatic way. ObjectScripting was born.

The first objective of ObjectScripting was to allow developers to customize the IDE without
needing to recompile any code – especially the IDE code itself. The second goal was to allow
users to change the IDE in arbitrary ways, with no predefined limits. We wanted all this to be
possible with a minimum of complexity. It was clear from our experience with editor key
customization that scripts would be a good approach. What was needed was a new scripting
language that supported features such as classes, late binding, object-specific method overriding
and dynamic variable typing. The result was a new language called cScript. The ‘c’ in the name
was added because the language looks immediately familiar to C++ programmers.

The IDE uses ObjectScripting scripts internally to implement much of its functionality. This
default code is the point of departure for user customizations. By adding ObjectScripting code of
your own, you can install new tools, customize nearly any part of the IDE, and have your own
code run automatically when a key is pressed. Through ObjectScripting, Borland C++ 5.0 now
offers an unprecedented level of customization, that lets developers adapt the IDE to their
individual tastes and preferences.

ObjectScripting Objects

cScript makes it possible to control the IDE because all the objects in the development
environment are exposed through the global object called IDE, of class IDEApplication. This
object is created by code in the STARTUP.SPP file, which is automatically executed when
ObjectScripting starts. You gain access to the various parts of the IDE, such as the
KeyboardManager or the Editor window by accessing properties of the IDE object. To set the
text of the status bar, you simply make an assignment to the StatusBar property of IDE, like
this:

IDE.StatusBar = "My Text";

cScript properties are similar to Delphi ObjectPascal properties. Properties are like C++ data
members, except they are accessed internally through functions called getters and setters.
When you use a property as an Rvalue, the getter function is called to obtain the value of the
property. The getter can then return the property value directly, or do something a bit more
elaborate like make format conversions, notify other objects, update the screen or whatever.
Using a property as an Lvalue implicitly invokes the property setter.

The bottom line is that properties make it possible for simple assignment statements to produce
side effects, without you having to worry about the details. In the status bar example above, you
just set the text to a new value. You don’t have to worry about refreshing the screen, or whether

ObjectScripting Ted Faison 96/4/25 page 2

the status bar is visible or not. The StatusBar string object’s setter function handles the details
automatically.

There are ObjectScripting objects that encapsulate most items in the IDE. There are classes to
access the Search engine, the editor, the keyboard manager, to create and extend popup
menus, and more.

Executing Scripts

ObjectScripting programs are written using a plain text editor and saved as .SPP files. Scripts
are run by the ScriptEngine, and can access any object used by the IDE, like the text editor or
the debugger. cScript programs can also access C runtime functions, use Windows interface
objects like dialog boxes and messages, and produce text output on the screen. To enhance
performance, when ObjectScripting encounters a script for the first time, it produces a tokenized
file with the extension .spx, which is then run. Subsequent runs of the same script use the .spx
file and load faster.

 Once you have a .SPP script source file, you can run it in one of three ways:

1 - By using the Script | Run command on the main menu.
Doing so opens a small window that looks like this:

Figure 1 - The Script | Run window.

You can type any valid ObjectScripting code in the window. When you press the ENTER
key, the code is executed and the output (if any) is shown in the Message Window, on
the Script tab.

2 - By binding your code to a key.
The easiest way is to put code in a file called PERSONAL.SPP script file. Using your own
script file – as opposed to adding code to one of the Borland script files – protects your
code from being overwritten by new releases of the IDE. Moreover, your code is
available for use regardless of which keyboard emulator you use. Say you want the
function Abc() to be called when the HOME key is pressed. All you have to do is write:

(IDE.KeyboardManager.GetKeyboard(“Desktop”)).Assign(“<Home>”,
“Abc();”);

Another way to bind your code to a key is to add your function to the keyboard file, which
will be described later. To make the system invoke the function Abc()when the HOME key
is pressed, just go into the file default.kbd with a text editor and put the function
Abc(); in the KeyCommand field for the HOME key.

3 - By attaching code to an event.
ObjectScripting allows you to attach static or dynamic events handlers to execute your
own code. Handlers are described in more detail a little later. Events may be raised
either internally by the IDE or externally by a user script.

ObjectScripting Ted Faison 96/4/25 page 3

A Simple Example

The easiest way to show what ObjectScripting can do for you is through an example. Borland
C++ 5.0 ships with a number of ObjectScripting sample programs that you can use immediately
or as the basis for your own customizations. There are also a number of scripts used to
implement much of the IDE functionality. For example, the file EDIT.SPP contains the script
code for the Borland C++ editor. It has code that manipulates the contents of the editor window,
allowing you to select blocks of text, move the cursor, scroll the window, etc. For example, the
code to indent a block of text is implemented by the function SlideBlock, that looks like this:

on editor:>SlideBlock(backward) {
 declare eb = .BlockExists();
 if (eb != NULL) {
 declare nIndent = .Options.BlockIndent;
 if (backward) {

 nIndent = nIndent * -1;
 }
 eb.Indent(nIndent);
 } else
 IDE.StatusBar = "No block exists";
}

The function creates a handler for the editor object, which is an ObjectScripting object that
encapsulates the Borland C++ 5.0 text editor. The call .BlockExists calls the member function
editor.BlockExists. This function is not declared inside class editor, but added dynamically
to the class at runtime. You can add your own member functions to the built-in ObjectScripting
classes without needing to recompile those classes. The variable returned by BlockExists is
an object of class EditBlock, through which you can manipulate selected text. If no block is
selected, BlockExists returns NULL. If there is selected text, the call Options.BlockIndent
gets the number of space characters corresponding to one indent. This value is set by the user
through the Options | Environment | Editor | Options window. The call eb.Indent invokes the
function EditBlock.Indent to actually move the selected text. All the functionality of the
Borland C++ 5.0 editor is implemented by ObjectScripting code. There are no tricks, no hidden
variables or undocumented functions of any kind. Anything the editor is capable of can be
controlled using ObjectScripting.

Editor key mapping

The text editor windows are controlled by keyboard commands, but the command invoked by a
given key sequence is not hardcoded into the system. The way key sequences are handled is
determined by ObjectScripting code that executes code bound to a key sequence. Files called
keyboard files, with the extension .kbd, define the key-command mapping. By default, the IDE
uses the file default.kbd, which maps keys according to the Microsoft Common User Interface
Architecture guidelines. By selecting a different keyboard file, you can emulate other popular
editors or even create your own key mappings. Borland C++ 5.0 ships with files to emulate Brief,
Epsilon and WordStar commands. To change the keyboard file, you use the Options |
Environment | Editor | File command.

When the IDE starts up, it automatically executes the ObjectScripting code in the file
startup.spp. This file contains the code

LoadKeyboard() {
 declare String sFileName(scriptEngine.StartupDirectory +
 IDE.KeyboardAssignmentFile);
 LoadKeyboardDataFile(sFileName.Text,FALSE);
}

ObjectScripting Ted Faison 96/4/25 page 4

The string sFileName is initialized to contain the path of the keyboard specified by the user. The
LoadKeyboardDataFile function resides in the file KEYMAPS.SPP. This function clears any
previously-made assignments and then processes the data it finds in the .KBD file. This data
associates key-names with scripts, and part of the processing performed by
LoadKeyboardDataFile is to make the necessary assignments to the keyboard objects, such
that pressing a key will trigger the associated script. For example, assume the default.kbd file
is being used. When the user hits the HOME key, the associated script is invoked, which looks like
this:

editor.TopView.Position.MoveBOL();

The code uses editor.TopView to retrieve the EditView object associated with the active
editor window. Its Position property returns an EditPosition object, through which the cursor
position is changed by calling the MoveBOL function. As a result, the cursor is moved to the
beginning of the line containing the cursor.

Had the user selected a different keyboard file, a different command might have been executed
for the HOME key. For example, the Epsilon.kbd file maps the HOME key to the script:

editor.EmacsBeginningOfWindow();

which moves the cursor to the beginning of the first line displayed in the editor window.

Controlling the IDE

The text editor is not the only thing you can control through ObjectScripting. Any feature of the
IDE is accessible. You can add your own commands to the top level menu. Say you want to add
your own Spell Check command. The code

#define TEXT "&Tool | Spe&ll Check"
#define DESCRIPTION "Runs a custom spelling checker”
assign_to_view_menu("IDE", TEXT, "RunSpellChecker();", DESCRIPTION);

adds a menu item labeled Spell Check to the Tool menu. The DESCRIPTION string specifies
what to show on the status bar when the user selects the command. When the Spell Check
command is executed, ObjectScripting calls the user function RunSpellChecker, which then will
take charge of the actual spell checking, possibly by invoking a user-supplied DLL.

Debugging an ObjectScripting script

Because you can develop arbitrarily complex cScript programs, there may be times when a
program doesn’t immediately do what you intended. ObjectScripting provides you with debugging
support, allowing you to set breakpoints, single step through code and inspect variables. To set a
breakpoint, all you do is embed the statement

breakpoint;

in your program. When the system hits a breakpoint, it displays the Breakpoint Window. As an
example, say you put a breakpoint in the GetWord handler for editor, contained in the file
EDIT.SPP. The code looks like this:

on editor:>GetWord() {

ObjectScripting Ted Faison 96/4/25 page 5

 breakpoint;
 if(!initialized(.TopView)){
 // no edit window exists
 return "";
 }
 // …
 // …
}

When GetWord is executed, script execution stops on the breakpoint line, and the Breakpoint
Window comes up, as shown in Figure 2.

Figure 2 - The ObjectScripting Breakpoint Window.

Once you hit a breakpoint, you can single step through your script code. The Line field shows
you the line number and cScript code that was last executed. Using the Immediate Mode
controls, you can execute ObjectScripting commands to inspect variables or test code before
adding it to the ObjectScripting program. Figure 3 shows an immediate statement that returns
the number of lines in the active edit window.

Figure 3 - Browsing the system using Immediate Statements.

The Step Over button lets you execute complete functions at full speed, with execution stopping
after the function returns. The Abort button quits the script, unloads the ObjectScripting
debugger and returns control to the IDE.

ObjectScripting Ted Faison 96/4/25 page 6

Capabilities exposed through the IDE object

When your start the Borland C++ 5.0 IDE, the cScript object IDE is automatically created as a
global object. IDE gives you control over the system not only through its KeyboardManager and
Editor members, but also through a rich set of member functions. Using function calls you can
control the Debugger, invoke Edit commands, perform File operations, etc. All the items
contained in menus can be accessed using ObjectScripting code. Table 1 shows the main
function groups, organized according to the menu they correspond to.

Function Group Description

Debug Allows control over the debugging process. Using functions in this
group you can load the debugger, run it, set breakpoints, add watches,
inspect variables, stop the debug process and more.

Edit All the commands in the Edit menu are available here. You can cut,
copy, paste, undo, redo and select all the text in a given window.

File This group of functions lets you open, close, save and print files. You
can also open your own FileDialog common dialog to perform file
operations, or even send a file by mail to another user.

Help All the Help menu commands are available in this group, so you can
launch the Help engine, display the Borland C++ 5.0 Help Contents or
open the various specialized help files on OWL, the keyboard or the
Windows API.

Options Using Options functions, you can access the project options, the
environment options, change editor preferences, add your own tools
to the Tool menu, and modify your project’s Style Sheets. To fill in the
various Options dialog boxes, you use the function SendKeys to feed
keystrokes into the keyboard buffer.

Project These commands let you compile a file, build the project or rebuild
the whole project.

Script These commands allow you load, run and compile cScript files.
Search Using these commands you can search for text, repeat a search and

replace text.
View These commands give you control over which windows in the IDE are

visible. You can show or hide the Breakpoint window, the Stack
window, the Classes window, the CPU window, the Global variable
window and more.

Window These commands allow you to arrange the editor windows, by
cascading, tiling, closing, minimizing or restoring them.

Table 1 - The menu-related IDEApplication member functions.

Besides the functions in Table 1, there are a number of miscellaneous others that don’t directly
correspond to menu commands. Table 2 describes some of them.

Function Name Description

CloseWindow Lets you close the active window
DirectionDialog Displays a dialog letting the user specify a direction: Up, Down, Left,

Right.
DirectoryDialog Displays a directory-browsing dialog allowing the user to specify a

directory.

ObjectScripting Ted Faison 96/4/25 page 7

DoFileOpen Lets you hook what happens after a common File Open dialog box
closes.

ExpandWindow Expands the size of a window.
GetWindow Returns a window
Message Displays text in an IDE-style message box.
Quit Terminates the IDE and shuts down the entire Borland C++ system,

without saving or prompting. To exit and prompt the user to save
changes, you can use FileExit.

StartWaitCursor Allows you to set the cursor to an hourglass. The function
EndWaitCursor restores the normal cursor.

Tool Invokes a given tool, passing optional parameters to it.
YesNoDialog Displays a dialog that prompts the user for a Yes/No answer to a

question.

Table 2 - The miscellaneous member functions of the global object IDE.

There are also numerous properties, like StatusBar, that allow direct and simple access to
different kinds of information. Table 3 gives a list of the main properties of the IDE object.

Property Name Description

Application This is a property required by the Microsoft guidelines for automation
servers. Its purpose is to provide something that an automation
controller, like Word or Excel, can use as a starting place to access the
functionality of the server.

Caption Returns the caption of the main IDE window, in the form “Borland C++ -
%s”, where the %s is the name of your project. You can also change
the caption by assigning a value to Caption.

CurrentDirectory Returns the current directory used to open files.
Editor Provides access to the properties of the editor window.
KeyboardManager Allows access to the IDE keyboard subsystem.
StatusBar Allows you to get/set the text displayed on the status bar.
Version Returns the version of the Borland C++ environment.

Table 3 - The main properties exposed by the global object IDE.

There are also a number of events that you can handle, to customize what Borland C++ 5.0 does
at various times, such as when starting a build or exiting back to Windows. The following table
lists the events.

Event Description

BuildComplete Raised at the end of a build. By default the system plays a
.wav file.

BuildStarted Raised when the user starts a build.
DialogCreated Raised every time Borland C++ 5.0 shows a dialog box to

the user.
Exiting Raised when the IDE is exiting.
HelpRequested Raised when one of the Help methods of the IDE object is

called.

ObjectScripting Ted Faison 96/4/25 page 8

Idle Raised if the IDE is left idle for more than a certain user-
definable interval.

KeyboardAssignmentsChanging Raised after the user selects a new keyboard assignment
file, but before the file is actually changed.

KeyboardAssignmentsChanged Raised after the keyboard file name has been changed.
MakeComplete Raised at the end of a MAKE.
MakeStarted Raised when a MAKE is started.
ProjectClosed Raised when a project file has been successfully closed.
ProjectOpened Raised when a project file has been successfully opened.
SecondElapsed Raised once every second.
Started Raised after the IDE has been loaded and initialized and all

startup scripts have been processed.
SubsytemActivated Raised when the active subsystem is changed.
TransferOutputExists Raised when a transfer tool has created output that needs

processing.
TranslateComplete Raised at the end of a translation.

Table 4 - The events raised by ObjectScripting.

The IDE object can also be accessed by non-ObjectScripting programs. The object is registered
as a Windows automation server, so any automation controller can drive the full Borland C++ 5.0
IDE programmatically.

A very significant part of the overall functionality of the Borland C++ 5.0 IDE is implemented
through ObjectScripting code, which leaves the door wide open for developers to go in and make
customizations without any predefined limits or restrictions.

The cScript Language

The key to ObjectScripting is cScript, which is a powerful, object-oriented language. You declare
classes and provide them with properties and member functions. As explained earlier, properties
are equivalent to C++ data members that use get and set functions as implicit accessors. There
are no access specifiers for members, so everything is always public. A common practice in
cScript is to derive classes from the built-in classes to override one or more functions. You
declare classes using this notation:

class EditorKeyboard(name) : Keyboard(name)
{
 //…
};

This looks a lot like a C++ class, but with important differences. There are no constructors as in
C++. Any code appearing inside the class declaration that is outside any function definition is
executed as the class initialization code. The class name can have an optional parameter list,
which declares the arguments used in the initialization code.

Variables are not typed at compile time. When you declare a variable, you don’t indicate a type.
The ObjectScripting runtime engine determines types at runtime. Note that the parameter name
declared with class EditorKeyboard is untyped. The same variable may also be used over
again with a different type. The code

declare myVariable = 100;
myVariable = “Now it’s a string”;

ObjectScripting Ted Faison 96/4/25 page 9

declares a generic variable that has an integer type. The variable is then assigned a string,
changing its type. The cScript runtime engine knows how to perform certain type conversions at
runtime. You can assign a string number to a integer, or an integer to a string. For example the
code

declare myString = “String”;
myString += 100;

will make myString assume the value “String100”. cScript supports C-style arrays, but the array
contents can also be heterogeneous, meaning each slot can contain data of a different type. The
code

declare myArray;
myArray = new Array [10];
myArray [0] = “Hello, “;
myArray [1] = 5;
print myArray [0] + myArray [1];

produces the output:

Hello, 5

The new operator is used to allocate storage for an object and initialize it. The ObjectScripting
engine performs automatic garbage collection, so you don’t have to worry about memory leaks.

You can create special arrays known as associative arrays, in which array slots are accessed
using strings instead of integers. Associative arrays make it easy to create dictionaries or symbol
tables. The following code creates and initializes an associative array:

declare TelephoneNumbers;
TelephoneNumbers [“Ted”] = “555-1111”;
TelephoneNumbers [“Sue”] = “(213) 555-2222”;

To lookup a telephone number you can do something like this:

declare number;
declare name = “Sue”;
number = TelephoneNumbers [“Ted”];
number = TelephoneNumbers [name];

cScript has control statements that are similar to C++, including switch, if, else, do, while
and for. The following is valid cScript code:

if (a > 100)
{
 // … do something…
}
else
{
 // … do something else…
}

for (declare i = 0; i < 10 + 1; i++)
{
 // .. do something…
}

declare j = 10;
while (j > 0)
{
 // … do something…

ObjectScripting Ted Faison 96/4/25 page 10

 j--;
}

The notation was purposely kept as close as possible to C.

Function overriding

In C++ you override member functions by class derivation. If class A has the virtual member
function ABC(), you can override it by deriving a class B from A and adding a member function
called ABC() to it. You can do this in cScript , but you also have two additional options: using
closures and dynamic overriding. The best way to describe a closure is through an example. Say
you want to override the Exiting event of the IDE object, to play a .WAV sound file when the
user exits Borland C++ 5.0. Using a closure operator, you override the IDE::Exiting function
like this:

on IDE:>Exiting()
{
 if (ExitingWAV != "None") {
 declare wav = new TWAVFile(ExitingWAV);
 wav.Play();
 }
 return pass();
}

The special cScript :> operator is called the closure operator and is used to create an on
handler. On handlers and closure operators define a member function, not for a class, but for a
specific instance of a class – in this case for the IDE instance of class IDEApplication. When
the Exiting event is raised on object IDE, the custom Exiting function is invoked. To invoke
the regular function IDEApplication::Exiting, you use the pass() call, passing all the
parameters received by your overriding function to the base function. A significant advantage of
on handlers is that they let you override a function without the hassle of creating a completely
new class.

When you create an on handler using the closure operator, your handler permanently overrides
the corresponding function in the base object. Another way to override a function is to use
attach and detach. Using attach you can essentially hook a function in another object and
replace it with your own function. The advantage of attach/detach over on handlers is that you
have the opportunity to change overriding handlers at runtime. The hooking operation is
completely dynamic, and the other object doesn’t even have to be recompiled. For example, to
override the Exiting event of the IDE object, you could do this:

class MyIDE : IDEApplication
{
 //…

 // declare a member function
 Exiting()
 {
 if (ExitingWAV != "None") {
 declare wav = new TWAVFile(ExitingWAV);
 wav.Play();
 }
 return pass();
 }
};

MyIDE x;
if (debugger.HasProcess)
 attach x:>Exiting to IDE:>Exiting;
else

ObjectScripting Ted Faison 96/4/25 page 11

 detach x:>Exiting from IDE:>Exiting;

The code that does the attaching and detaching would be written inside some user object. As
script modules are loaded and unloaded, their handlers (both static and dynamic) are propertly
fixed-up and maintained. The ObjectScripting system allows you to write functionality that
resides completely in one module, and have other modules load/unload that module on an as-
needed basis.

DLLs are on tap

cScript supports calling functions contained in DLLs. If you can’t accomplish a certain task using
cScript code alone, or if you already have some code in a DLL, then it may make sense to
invoke DLL code. You can even call the C runtime library, contained in the file cw3220mt.dll.
To invoke a function in a DLL, you use the import keyword. You then define function prototypes
for the functions you want to use. For example, if you want to use the fopen() function, you
declare it like this:

import "cw3220mt.dll" {
 long fopen (const char * __path, const char * __mode);
}

In your cScript file, you can then access fopen like this:

declare myFile;
myFile = fopen("notes.txt", "w");

Can you call pascal functions from cScript ? Absolutely. When you declare a function imported
from a DLL, ObjectScripting determines at runtime the appropriate calling convention – pascal,
cdecl or stdcall – that applies to that function. To call a Delphi or Windows pascal function,
you would declare it like this:

import "somefile.dll" {
 int SomeFunction(const char*, int);
}

You would then call the function normally:

declare result;
result = SomeFunction(“Hello”, 5);

You can also call Windows API function just as easily. For example to call the function
GetWindowsDirectoryA, you would add the import declaration

import "kernel32.dll" {
 int GetWindowsDirectoryA(char *, int);
}

to your code, then invoke the function with standard notation like this:

declare winDir;
declare ret = GetWindowsDirectoryA(winDir, pathLength);
if (!ret)
{
 IDE.Message("Could not get the windows directory.");
}

Notice how the variable winDir is declared and used. It is declared as an untyped variable, but
then used as a char* in the function call. ObjectScripting doesn’t require you to allocate a buffer

ObjectScripting Ted Faison 96/4/25 page 12

to pass to GetWindowDirectoryA, because the system automatically allocates a temporary
internal 4KB buffer for you to use in the function call. The resulting code is straightforward. With
the ability to call DLL functions, cScript takes all stops out of script programming and IDE
customizing.

Another Example

Let’s look at an entirely different type of script. One that feeds keystrokes to the IDE, simulating
user typing. Keystrokes have the potential to call ObjectScripting functions, as defined by the
keyboard file, so you can always call those functions directly, instead of simulating keystrokes.
Nevertheless, keystrokes may produce dialog boxes that are easy to fill out with ObjectScripting
code, and may sometimes allow you to save some coding.

Say you want to get a list of files that contain some string pattern. You could use the integrated
Grep tool, but you can also write a simple cScript program to get the same results. DIRTOOL.SPP
is a simple script program that ships with Borland C++ 5.0. It demonstrates the basic concepts of
searching directories and printing results in the Message window. When you run DIRTOOL, the
script installs a new tool called Directory Listing on the Tool menu. By selecting this new Tool
command, the dialog box shown in Figure 4 will be displayed.

Figure 4 - The dialog box displayed by the DIRTOOL script.

A brief explanation of the DIRTOOL script program will help. The code in DIRTOOL itself doesn’t
actually implement the functionality of the tool. All DIRTOOL does is automate the process of
adding a tool to the IDE’s list of internal tools. It does this by driving the user interface of the
New Tools dialog box using the function SendKeys. The code to add this tool looks like this:

IDE.KeyboardManager.SendKeys("%n", TRUE);
IDE.KeyboardManager.SendKeys("Directory Listing", TRUE);
Tab();
IDE.KeyboardManager.SendKeys("command.com", TRUE);
Tab();
declare keys = "$NOSWAP $CAP MSG(FILENAME) /c dir /b $PROMPT $SELNODES";
IDE.KeyboardManager.SendKeys(keys, TRUE);
Tab();
IDE.KeyboardManager.SendKeys("Directory Listing", TRUE);
Tab();
keys = "Creates a directory listing in the message window.";
IDE.KeyboardManager.SendKeys(keys, TRUE);
IDE.KeyboardManager.SendKeys("{VK_RETURN}", TRUE);
IDE.KeyboardManager.SendKeys("%c", TRUE);

IDE.OptionsTools();

Listing 1 - The cScript code in DIRTOOL that create a new tool in the Tool menu.

ObjectScripting Ted Faison 96/4/25 page 13

The code uses the IDE object to access objects contained inside the Borland C++ 5.0 Integrated
Development Environment. IDE is a global object, allocated automatically when ObjectScripting
starts up. The KeyboardManager is an object that manages keys typed by the user. The
SendKeys method is used to simulate keys typed by the user. Using SendKeys, a number of
keystrokes are put into the keyboard buffer, and used later to fill out the fields in two dialog
boxes. The first dialog box is displayed by the call IDE.OptionsTools().

The dialog shown is the same one created by the Options | Tools menu command, and looks
like this:

Figure 5 - The Options | Tools dialog box.

Figure 5 is the dialog that allows you to configure your own tools on the Tools menu. The first
key placed in the keyboard buffer by DIRTOOL is “%n”, which equates to the Alt-N accelerator
key. This key causes the New button to be pressed on the Tools dialog. This command causes
the Tool Options dialog to open, looking like this:

ObjectScripting Ted Faison 96/4/25 page 14

Figure 6 - The Tool options dialog box.

The remainder of the commands sent by DIRTOOL are used to fill out the fields in this dialog box.
For example the code

IDE.KeyboardManager.SendKeys("Directory Listing", TRUE);

puts the text “Directory Listing” in the Name edit box. The code

Tab();

moves the focus to the next field. After filling out all the fields, the code

IDE.KeyboardManager.SendKeys("{VK_RETURN}", TRUE);

simulates the Enter key, which closes the Tool Options box. Then the line

IDE.KeyboardManager.SendKeys("%c", TRUE);

closes the parent Tools dialog box, by sending the Alt-C accelerator to press the Close button.

The result of running the Directory Listing tool is entirely equivalent to creating a tool manually
with the fields shown, and running it from the Tools menu. You can develop script programs that
automate any aspect of your work. For example, the IDE editors use scripts to process key
strokes. By switching scripts, the IDE can easily change from Brief emulation to Epsilon
emulation or other. The ObjectScripting environment is designed to encourage you to create
your own keystroke handling scripts.

ObjectScripting Ted Faison 96/4/25 page 15

Conclusion

Borland has provided many ways to customize parts of the IDE in previous versions of Borland
C++, but developers still needed more flexibility. Now, with ObjectScripting, we have opened up
the entire IDE to customization and control. Using simple cScript programs that are easy to write
and debug, you can now take control over all parts of the integrated development environment.
With the ability to call Tools, use high level Editor functions to search and modify text, the
capability to install static or dynamic handlers, the sky is the limit. The numerous sample
programs shipped with Borland C++ 5.0 provide good examples cScript programming, but they
represent only the tip of the iceberg of what you can accomplish with ObjectScripting.

