
Configuring WCF Using Visual Studio Wizards

Ted Faison
April 2009

So you’ve decided to bite the bullet and develop a Windows Communication Foundation
(WCF) service. One of the first decisions you’ll need to make is how to host the service.
WCF offers different hosting solutions. In the most simplistic scenarios, useful mostly for
quick demos, you can host the service in a console or Windows Forms application. The
service is then only available to clients if the application is running. Another option is to host
the service in a Windows NT service. More commonly, WCF services are hosted by IIS. The
service is instantiated automatically by IIS when clients make calls to it, using a URL. This
article will show the steps involved in creating a service, hosting it in IIS and calling the
service from a client application.

Background

You might think that the process of creating a simple Hello World WCF service and client
was a simple copy and paste operation. By the sheer length of this article, you can tell that
the process is somewhat less than trivial. There are lots and lots of details involved – mostly
involving Visual Studio wizards. Just to avoid confusion, I’ll assume you don’t know anything
about the subject and will show you every Visual Studio screen involved. Some people may
prefer less information, but others will find the lowest level of details extremely useful.

The overall process of creating a WCF-based system entails creating three separate
components and hooking them up via WCF. The three components are:

• The WCF service
• The service host
• The client

The good news is that all the plumbing details are handled by Visual Studio wizards, without
you needing to write almost any code. The bad news is that there are dozens of wizard
screens to go through and setup.

This article is based on Visual Studio 2005. All the functionality is also supported by Visual
Studio 2008, but some screens may look slightly different. My implementation is based on
C#, but everything I cover also applies to VB.Net programmers.

In a Nutshell

In an article with so many sections and figures, it is easy to get lost in the details. Before
jumping into the nuts and bolts, here is what we’re going to do:

1. Create a DLL with the basic service functionality that we plan to expose via WCF. My
service will simply return the current time.

2. Create a Web project to expose the service functionality as a Web Service.

3. Configure the Web project to support dynamic metadata requests, so Visual Studio
can automatically create a proxy to the service when creating a client application.

4. Create a client application, add a service proxy to it and call the service through the
proxy.

Creating a service DLL

To create a WCF service, you actually just create a simple Class Library DLL project. A
given DLL can be exposed (without changes) by any type of host:

• A Web Service
• A Console Application
• A Windows Forms Application
• An NT Service
• Other

Let’s get started. Open Visual Studio. Select the menu command File -> New Project. In
the New Project dialog box, select the Class Library template and enter the name of the
service, as shown in the next figure.

Figure 1 - Creating a service project.

The service described in this article will simply return the current time. As you can see in the
figure, I named the service MyTimeService. Next, right click on the MyTimeService project in
the Solution Explorer and select Add New Item from the context menu. In the Add New
Item dialog box, select WCF Service, as shown in the next figure.

Figure 2 – Adding a service class to the project.

Use TimeService for the newly added item. Click the Add button. Visual Studio will add the
item to the project, and also update the project references to include a number of WCF
items, as shown in the next figure.

Figure 3 – WCF references added to the project automatically.

To create a WCF service class, you should choose WCF Service as the item type. You could
have chosen the simple Class type. The advantage of using WCF Service as the type is
that it makes Visual Studio add the WCF references to your project and also creates some
useful default code in the generated class. The following listing shows the default

TimeService class created by Visual Studio. The class includes an interface called
ITimeService, which is defined as a WCF ServiceContract.

using System;
using System.ServiceModel;

namespace MyTimeService
{
 [ServiceContract()]
 public interface ITimeService
 {
 [OperationContract]
 string MyOperation1(string myValue);
 }

 public class TimeService : ITimeService
 {
 public string MyOperation1(string myValue)
 {
 return "Hello: " + myValue;
 }
 }

 internal class MyServiceHost
 {
 internal static ServiceHost myServiceHost = null;

 internal static void StartService()
 {
 // Consider putting the baseAddress in the configuration system
 // and getting it here with AppSettings
 Uri baseAddress =
 new Uri("http://localhost:8080/MyTimeService/TimeService");

 // Instantiate new ServiceHost
 myServiceHost = new ServiceHost(typeof(TimeService), baseAddress);

 myServiceHost.Open();
 }

 internal static void StopService()
 {
 // Call StopService from your shutdown logic (i.e. dispose method)
 if (myServiceHost.State != CommunicationState.Closed)
 myServiceHost.Close();
 }
 }
}

Listing 1 - The default WCF service code created by Visual Studio.

The default code includes a class called MyServiceHost. If your service will be hosted by
IIS, delete the MyServiceHost class, since it won’t be used. The default ServiceContract
contains an operation named MyOperation1. We’ll add a new operation called
GetCurrentTime, as highlighted in the following listing.

[ServiceContract()]
public interface ITimeService
{
 [OperationContract]
 string MyOperation1(string myValue);

 [OperationContract]
 DateTime GetCurrentTime();
}

I’ll add a GetCurrentTime implementation to TimeService class:

public class TimeService : ITimeService
{
 public string MyOperation1(string myValue)
 {
 return "Hello: " + myValue;
 }

 public DateTime GetCurrentTime()
 {
 return DateTime.Now;
 }
}

Listing 2 - Adding a new operation to the our service.

You can delete the operation MyOperation1 from the interface and class. Also delete the
Class1 file from the project. Save the solution, using the menu command File -> Save All.
The Save Project dialog box allows you to change the name of the solution, which defaults
to the project name. To avoid any confusion between the solution and project files, I
renamed the solution to MySolution, as shown in the next figure.

Figure 4- Saving the project with a new solution name.

At this point the Solution Explorer should look like the following figure.

Figure 5- The Solution Explorer showing the renamed solution.

The next step is to create a web service that will host the WCF service. Right click on
MySolution in the Solution Explorer and select Add -> New Web Site from the context
menu. In the Add New Web Site dialog box, select WCF Service, as shown in the next
figure.

Figure 6- Creating the host web project for the WCF service.

For project template, choose WCF Service. You can put this web site project pretty much
anywhere. I selected a folder under the MySolution folder. The created project contains a
default service called service.cs. You can delete it, since we’ll be using TimeService.cs
(in the MyTimeService project) for our service. You can also delete the App_Code and
App_Data items in the Solution. The Solution Explorer should now look like the next figure.

Figure 7- The new web site added to the Solution Explorer.

In project MyTimeWebService, add a reference to MyTimeService to. To do so, right click
on the MyTimeWebService project node and select Add Reference from the context
menu. In the Add Reference dialog box, go to the Project tab and select
MyTimeService, then click OK.

Figure 8- Adding a project reference to the web project.

Click OK and Visual Studio will add a Bin folder to the web site project, with two items, as
shown in the next figure.

Figure 9- The Bin folder added to the web project.

To verify that everything is working so far, run the web project. To do so, right click on the
MyTimeWebService project and select View in Browser on the context menu. The
following browser page should appear.

Figure 10- The default page that appears when running the web project.

Note the URL and port number (1414 in this example) that appears in the Address field in
Internet Explorer. We’ll use this URL later, to test the service and to call it from the client
side. This browser window confirms that the web project is configured and running
correctly.

Now we need to hook our WCF service into the web project. A standard WCF service should
make its metadata available, so clients can use it to easily construct a proxy to the service.
When the service host is a web project, WCF metadata is returned by referencing the web’s

Service.svc resource. The browser page shown in the previous picture shows the web
project’s base URL. The following URL will access the Service.svc resource:

http://localhost:1414/MyTimeWebService/Service.svc

We’ll use this URL later, to generate the service proxy on the client side.

Editing the Service.svc File
In order for the URL to work, we need to edit the default Service.svc file in project
MyTimeWebService. The following listing shows Service.svc before and after the
changes.

Before

<% @ServiceHost Language=C# Debug="true"
Service="MyService" CodeBehind="~/App_Code/Service.cs" %>

After

<% @ServiceHost Language=C# Debug="true"
Service="MyTimeService.TimeService" %>

Listing 3 - The Service.svc file, before and after changing it.

Configuring the Service
There is still a long list of things left to do, to setup the configuration files for WCF. You can
proceed in two ways: the easy way and the hard way. The easy way is to use Visual
Studio’s WCF Configuration Wizard. The hard way is to edit the XML configuration files
manually –something you should consider doing only if you are completely familiar with the
schema of the WCF-related configuration XML.

In this article, I’ll use the easy way. The first task will be to change the web project’s config
file to allow metadata retrieval, which will facilitate the configuration of clients. In the
Solution Explorer, right-click the web.config file of MyTimeWebService. From the
context menu, select Edit WCF Configuration, as shown in the next figure. If this
command is not available in the context menu, it means you don’t have the right version of
the .Net Framework installed. You probably have version 2.0. You’ll need version 3.0 or
better.

Figure 11 - Starting the Visual Studio WCF Configuration wizard.

There are two other ways to start the wizard:

• From the Visual Studio Tools menu
• From a command line prompt

In the Tools menu, there is an item called WCF Service Configuration Editor, as shown in
the next figure.

Figure 12 - Starting the wizard from the Visual Studio Tools menu.

To run the wizard from the command line, open a Visual Studio command prompt window
and run the program SvcConfigEditor.exe. The location of the program may vary,
depending on the version of Visual Studio you have. On my machine, with Visual Studio
2005, I found it in the folder:

C:\Program Files\Microsoft Visual Studio 8\Common7\IDE

The file may also be located in other Visual Studio folders. The wizard comes with a help
file, called SvcConfigEditor.chm.

If you run the wizard from the command line, it will start with a blank window. Use the
menu File -> Open to open the configuration file you want to change. The following figure
shows the wizard’s initial appearance, after opening the web.config file of the
MyTimeWebService project.

Figure 13 - The WCF Configuration wizard's main screen.

In the Configuration pane, right click on MyService and select Delete from the context
menu. MyService is a default service that we’ll replace with our new web service. Click on
Create a New Service in the Tasks pane. The New Service Element Wizard will
appear, as seen in the next figure.

Figure 14 - The wizard for creating new WCF service elements.

Enter the path to the MyTimeService.dll in the Web Service. In this example, the path is
the Bin folder of the MyTimeWebService project:

...\visual studio 2005\projects\mysolution\mytimewebservice\Bin

After entering the path, click the Next button. The wizard will show a list of all the DLLs in
the folder, as shown in the next figure.

Figure 15 - The list of service DLLs found by the wizard.

In the dialog box, double-click MyTimeService.dll. The dialog box will then display all the
WCF services contained in the DLL. In this example, there is only one, as shown in the next
figure.

Figure 16 - The list of services found in the selected DLL.

Double-click MyTimeService.TimeService. The wizard will then start asking you for
information about this service, as shown in the next figure.

Figure 17 - The service configuration wizard..

The Service type textbox is automatically filled-in for you. Click Next to go to the next
screen, shown in the next figure.

Figure 18 – Specifying the contract used by the service..

The Contract textbox should already be set. If not, you probably skipped a step or entered
incorrect information on one of the previous wizard pages. Enter the contract name as
shown in the figure above and click Next. The wizard will prompt you for the type of
communication mode your service will use, as shown in the next figure.

Figure 19 – Specifying the service’s communication mode..

The default communication mode is HTTP, which is what we want, since we’re configuring a
web service as the WCF host. Click Next to go to the next screen, shown in the following
figure.

Figure 20 – Specifying the web service’s interoperability..

Choose the Advanced Web Services interoperability option. This option adds support
for WS* specifications (like WS-Security, MTOM. WS-MetadataExchange and WS-
ReliableMessaging) to the project. Click Next to set the service’s endpoint. See the next
figure.

Figure 21 – Specifying the web service’s endpoint.

Enter the URL for the web service, followed by Service.svc. Click Next to see the final
wizard summary screen, shown in the next figure.

Figure 22 – The final summary page of the service wizard.

Click Finish. The service wizard will end and you’ll be taken back to the WCF
Configuration wizard. All the service settings will be shown, as seen in the next figure.

Figure 23 – The WCF Configuration wizard, showing the configured service.

You might want to save your work now. To do so, use the File -> Save menu or press Ctrl-S.

Enabling Dynamic Retrieval of Metadata

When you create a client that accesses your service, you’ll need to create a service proxy in
the client project. In order to enable Visual Studio to setup service proxies automatically for
clients, a service needs to makes its metadata available through the web service. To achieve
this, you need to add a WCF behavior specifying that the HTTP Get verb is supported for
MetadataExchange. You can use the Visual Studio WCF Configuration wizard to add this
behavior. Select the Advanced -> Service Behaviors folder in the Configuration pane,
as shown in the next figure.

Figure 24 – Creating a new service behavior for dynamic metadata retrieval.

Click the New Service Behavior Configuration link in the Tasks pane. The Behavior
Configuration pane will appear, as seen in the next figure.

Figure 25 – The behavior configuration screen.

Like most of the configuration items in WCF, behaviors can be named. It’s a good idea to
name the behavior with something other than the default NewBehavior name. A clear name
makes your configurations easier to understand. I used MexBehavior (Mex for

MetadataExchange). Click the Add button to display the list of behaviors that can be added
at the service level, as shown in the next figure.

Figure 26 – The behavior elements available.

Select the element serviceMetadata and click Add. Back on the main wizard screen,
double click the serviceMetadata element in the Behavior pane. You’ll get see the
properties for the serviceMetadata behavior element. Change the value of the
HttpGetEnabled to True, as seen in the next figure.

Figure 27 – Adding support for dynamic metadata retrieval.

Changing the property value to True allows clients to use the HTTP Get verb to retrieve the
service’s metadata. Visual Studio uses this metadata to automatically setup client proxies, as
described later.

So far we’ve only created a behavior element that supports dynamic metadata retrieval. To
complete the task, we need to actually use the element in our WFC service. To do so, click
on the Services -> MyTimeService.TimeService node in the Configuration pane. In
the right pane, open the BehaviorConfiguration dropdown and select MexBehavior, as
shown in the next figure.

Figure 28 – Using the newly created behavior in the WCF service.

Now the service is fully configured to support dynamic client configuration. Select File ->
Save to save the configuration file.

Checking the WCF Configuration

We’ve been through quite a few screens and changed many properties. If you’re not very
familiar with the overall process, it’s easy to miss something. Before proceeding any further,
it’s a good idea to stop and ensure that everything is setup correctly. We need to check that
our web service is running and responds correctly to queries. To do so, right click on the
MyTimeWebService project in the Visual Studio Solution Explorer and select View in
Browser from the context menu. You should get a browser window that shows the
directory contents of the web service’s root folder, as shown in the next figure.

Figure 29 – The browser window shown by the View in Browser menu command.

Notice the port number (1414) in the browser Address Bar. The actual port number on
your system may be different. The value is set dynamically by Visual Studio, when you
create a web project.

Now click on the Service.svc link in the browser window. If everything is configured
correctly, the browser should bring up a web page that describes the service, similar to the
one in the next figure.

Figure 30 – Testing the configuration of the WCF service..

If you don’t get this page, you’ll have to go back and check your steps. You must have
missed something. It is futile to continue any further until you get the right screen here.

Setting up the Client Configuration
Now that the service is setup correctly, you can create configuration settings for future
clients. Here we only create configuration settings; we don’t actually create a client project.
When we create a client project later on, it will use the client configuration settings we will
setup now.

Let’s get started. Using the WCF Configuration wizard, select the Client folder in the
Configuration pane, as shown in the next figure.

Figure 31 – The Client folder in the WCF Configuration wizard.

Click Create a New Client in the Tasks pane. You’ll get the New Client Element
Wizard screen, shown in the next figure.

Figure 32 – The first screen of the New Client Element Wizard..

Make sure the From service config radio button is checked. This tells the wizard to use all
the settings that we created for the service as the basis for the client.

Enter the path to the web service’s web.config file. Click Next. On the next screen, select
MySolution/MyTimeWebService/Service.svc from the Service endpoint dropdown.

Figure 33 – Specifying the service endpoint for the client configuration.

Click Next. Enter a name for the client configuration. This is the name that will used by
default by clients for the web service proxy. I entered TedsTimeService, as seen in the
next figure. The name can’t contain embedded spaces. If you include spaces, you’ll get a
runtime error when someone tries to access the service.

Figure 34 – Giving a name to the client configuration.

Click Next and you’ll see the final configuration screen of the wizard, as shown in the next
figure.

Figure 35 – The summary screen showing the client configuration settings.

Click Finish. Having setup the basic client configuration, we need to specify how clients will
connect to the service. The how part is defined by WCF binding element. To create a default
binding, select the Client node in the Configuration pane. The right pane will show the
Client configuration, as shown in the next figure.

Figure 36 – The initial client configuration settings.

In the right pane, click on the (Default) Click to Create link. You’ll see the initial bindings
for the client, shown in the next figure.

Figure 37 – The initial client configuration settings.

For many situations, the default binding properties will be fine. In the next section, we’ll
make some changes to support binary attachments. As you can see in the previous figure,
you can change all sorts of things that determine how the binding will work. If you don’t
need to support binary attachments in your web service, skip the next section.

Adding MTOM Support

If you want to support large attachments, MTOM (Message Transmission Optimization
Mechanism) is the way to go. MTOM is a world standard for sending attachments to web
service. To enable MTOM, use to the MessageEncoding property, shown in the previous
figure. Change its value from Text to Mtom. It you expect any web service parameters or
return values to exceed the default of 64 KB, change the following binding properties to
meet your needs:

• MaxReceivedMessageSize
• MaxArrayLength
• MaxBytesPerRead

Bindings can have a name. We’ll call ours MtomBinding. To do so, edit the Name property
at the top of the right pane, changing the value from NewBinding0 to MtomBinding. The
next figure shows the binding properties after making changes.

Figure 38 – Adding MTOM support to a binding.

Adding Reliable Messaging Support
When building distributed systems that rely on network messages, often you need to ensure
that messages reach their destination. Lost messages might cause the system to perform
incorrectly. Duplicated messages, or messages that arrive out-of-order, might also cause
problems. HTTP, via TCP, ensures that messages get to the destination computer
(assuming network connectivity is available). But TCP only verifies delivery at the socket
level. If the destination computer dies after receiving the message, but before processing it,
your distributed system may not function correctly. WS-ReliableMessaging is a WS*
specification to solve this problem. WCF supports a number of WS* specs, including WS-
ReliableMessaging. The WCF Configuration wizard makes it very easy to add reliability to
a system. Scroll down in the right pane to see the ReliableSession Properties section.
Set the Enabled property to True, as shown in the next figure.

Figure 39 – Adding ReliableMessaging support.

To implement reliability at the message level, a system must use sessions, in which
messages are numbered sequentially. WCF uses the expression Reliable Session for
sessions that support WS-ReliableMessaging. By default, messages are delivered to the end
application in the same order in which they are sent.

Note: To deliver a received message to an application , WCF calls your application handler
method. After the method processes the message and returns control to WCF, an
acknowledgement message is returned to the sender. The sender is now certain that the
message sent was actually handled by the recipient system. If that system had crashed
before or during processing of the message, no acknowledgement would have been
returned to the sender. In this case, WCF on the sender side would automatically try to
resend the message -- up to a certain number of times.

The last step in configuring reliability for our service is to associate the new binding with the
service’s endpoint. In the Configuration pane, select the node Services ->
MyTimeService.TimeService -> Endpoints -> (Empty Name). In the right pane, open
the dropdown for the BindingConfiguration property and select MtomBinding.

Figure 40 – Adding Security support.

Save the configuration by choosing File -> Save.

Adding Security Support
When a distributed system sends confidential information over the wire, security is
important. WCF implements security through authentication and encryption. The WCF
Configuration wizard makes it very easy to setup the security settings for a service.

In WCF, security is applied at the level of a binding. Back in Figure 39 you can see that the
right pane has two tabs: Binding and Security. To enable security, select the Security
tab and set the Mode property, as shown in the next figure.

Figure 41 – Adding Security support.

For the Mode property, there are 4 choices:

• None. No security is needed.
• Transport. Encryption is handled by the transport. Select this option if you plan to

use HTTPS. No user credentials are included with messages.
• Message. Encryption is handled at the message level, so you could send messages

safely even over an HTTP connection. User credentials are included with messages,
but everything is encrypted.

• TransportWithMessageCredential. Encryption is handled by the transport, but
messages also include user credentials.

In the Message Security Properties section, in the right pane in the previous figure, you
can configure which encryption algorithm will be used at the message level. The algorithm
is only used if you set Mode to Message.

The other properties in the right pane allow you to set up what type of credentials the client
will need to provide (a username/password, an X.509 security certificate, Windows
credentials or a security token issued by a trusted service).

Save the configuration by choosing File -> Save.

Creating the Client Project

The last piece in the puzzle is the web service client. I’ll keep things simple and just create a
console application. Right-click on the MySolution node in the Visual Studio Solution
Explorer and select Add New Project from the context menu. In the Add New Project
dialog, select Console Application. Enter a name and location and then click OK.

Figure 42 – a Service Reference to client.

In order for the client to be able to call methods of the web service, it must have a Service
Reference, which is essentially just a proxy through which web service calls go. To create
this proxy, go to the Solution Explorer, right click on the TedsMtomClient project and select
Add Service Reference on the context menu. On the Add Service Reference dialog,
enter the URI of the service and provide a name for the generated proxy.

Figure 43 – Adding a Service Reference to a client.

Click the OK button. Visual Studio will go and retrieve the metadata from the service and
build a local proxy. When all this is done, the Visual Studio Output window will have the
following text:

C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\svcutil.exe
/noLogo /s /d:"C:\Documents and Settings\ted\Local
Settings\Temp\lfib0uwk.gw4" /config:"C:\Documents and
Settings\ted\Local Settings\Temp\lfib0uwk.gw4\newapp.config"
/mergeConfig /out:"TedsTimeService.cs" /language:csharp
/n:*,TedsMtomClient.TedsTimeService
"http://localhost:1414/MyTimeWebService/Service.svc"
Attempting to download metadata from
'http://localhost:1414/MyTimeWebService/Service.svc' using WS-
Metadata Exchange or DISCO.
Generating files...
C:\Documents and Settings\ted\Local
Settings\Temp\lfib0uwk.gw4\TedsTimeService.cs
C:\Documents and Settings\ted\Local
Settings\Temp\lfib0uwk.gw4\newapp.config

A new Service Reference will be created and added to the client project. Visual Studio will
also add System.Runtime.Serialization and System.ServiceModel to the client project
references. The Solution Explorer will look like this:

Figure 44 – The references added by Visual Studio to the client project.

An app.config file is also added to the client project. The config file is derived from the
service’s config file and looks like this:

Listing 4 - The client app.config file created by Visual Studio.

The client config file will use the same MTOM and security settings as the service. If you
later decide to change the MTOM or security settings, you’ll need to change both the client
and the service configurations. To test the service, you’ll need to add some code to the
default Program.cs file of client project. The following listing shows an example.

using System;
using System.Collections.Generic;
using System.Text;

using TedsMtomClient.TedsTimeService;

namespace TedsMtomClient
{
 class Program

 {
 static void Main(string[] args)
 {
 TimeServiceClient timeService = new TimeServiceClient();
 DateTime currentTime = timeService.GetCurrentTime();
 Console.WriteLine(string.Format(
 "The time is {0:yyyy-MM-dd HH:mm:ss}",
 currentTime));
 Console.WriteLine("Press <Enter> to exit");
 Console.ReadLine();
 }
 }
}

Listing 5 – A simple client class to test the WCF service.

Run the client program. If everything works correctly, the TimeService service should be
instantiated and hosted automatically by MyTimeWebService. The following shows the
Command Prompt window when running the client.

Figure 45 – The output of a simple client console app.

Viewing the HTTP Traffic between client and service

It’s great when everything works the first time, but in real life things don’t always go as
expected. That’s when you need support tools to help you figure out what’s really going on.
When using WCF, there are so many ways to configure the system that it is extremely easy
to get something wrong. When your system doesn’t seem to work correctly, you often need
to see the messages exchanged by client and service. How? One way is to use a tool called
WCF Service Trace Viewer, which ships with the .Net Framework 3.0 SDK. This is a fairly
substantial tool that would require a separate article to cover.

For many situations, an HTTP-capture tool is easier to use and more appropriate. I’ll show
how to use a freely available HTTP proxy tool called Fiddler to capture and show all the
HTTP traffic between a client and server. Fiddler installs itself as a web proxy, so all HTTP
traffic going to and from the internet on your machine goes through it.

The following figure shows the Fiddler UI after running the Client program.

Figure 46 – Using Fiddle to inspect the HTTP traffic between our WCF client and service.

In the left pane Fiddler shows the HTTP traffic. When you select an item, the right pane
shows you the details about the associated request and response. The HTTP request is in
the upper portion and the HTTP response in the lower portion of the right pane, as shown
in the following figure.

Figure 47 – The HTTP request and response shown in the Fiddler’s right pane.

Both the upper and lower portions of the right pane contain a bunch of tabs. Each tab
basically allows you to look at different views of a request or response. The Raw view
shows the raw characters of the headers and content. I won’t describe Fiddle in further
detail here. For more information see:

http://www.fiddler2.com/

One issue when using an HTTP traffic sniffing tool on a Windows machine is capturing
messages sent to the special TCP local loopback address called localhost. When sending
messages to this address, the Windows HTTP stack doesn’t actually pump data all the way

http://www.fiddler2.com/

down to the IP layer, where it would appear on the network. Microsoft did things this way
to increase performance. The problem with this shortcut is that it prevents network analyzer

ols like Wireshark and Fiddler from capturing localhost traffic.

one testing

with Fiddler, make sure to set the localhost URLs back, by removing the dot.

latest

f

 this article will encourage you to use the
wizard, handling WCF configuration the easy way.

to

To solve the localhost problem, Fiddler resorts to a simple stratagem. In you application
program, wherever you have a URL that uses localhost, replace “localhost” with “localhost.”.
Notice the dot after the word “localhost”. Any messages sent to the host “localhost.” will be
intercepted by Fiddler. If you look carefully at the messages in the left pane in the previous
figure, you’ll notice that the URLs have the dot after “localhost”. Once you’re d

Conclusion

Windows Communication Foundation is a truly magnificent piece of work – on par with the
.Net Framework itself. WCF handles all the heavy lifting, in terms of support for the
web services standards. In doing so, WCF allows you to spend more time on your
application logic and less on communications-related details. Still, you need to know what
the various WS* standards support, because you need to configure WCF to leverage them.
WCF configuration is not at all trivial, but the WCF Configuration wizard handles many o
the details, sparing you from having to master the intricacies of the xml configuration files
that WCF relies on. There is little online information about the wizard, so many developers
are unaware of its power and usefulness. Hopefully

	Background
	In a Nutshell
	Creating a service DLL
	Editing the Service.svc File
	Configuring the Service
	Enabling Dynamic Retrieval of Metadata
	Checking the WCF Configuration
	Setting up the Client Configuration
	Adding MTOM Support
	Adding Reliable Messaging Support
	Adding Security Support
	Creating the Client Project
	Viewing the HTTP Traffic between client and service
	Conclusion

