
MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 1

The BOCOLE Engine and OCF Class Library Make Programming
OLE Easier

by Ted Faison

Ted Faison has written several books and articles on C++ and Windows. He is president
of Faison Computing, a firm that develops C++ applications, class libraries and custom
controls for Windows. Ted can be reached at tedfaison@msn.com.

It’s safe to say now that C++ is in the mainstream of programming. As people developed their
class hierarchies and objects, a problem has emerged: C++ is great for developing reusable
objects, but only in the context of the same development environment. If you create objects
using Visual C++ and MFC, you can’t realistically mix them with objects developed with
Borland’s OWL or Smalltalk. The problem is that object-oriented programming languages
support reusability at the source code level, not the binary level.

Consider creating a C++ object and putting it in a DLL. Great, but there are problems. DLLs
export a list of callable function names, but C++ mangles these names. There are no name-
mangling standards, so if the DLL was developed with Borland C++ it will have names mangled
differently than if it was implemented with Visual C++. To be able to call the member functions
exported from a DLL, the calling application must be implemented using the same vendor’s C++
as the DLL. A pity, and also a source of headaches for companies with C++ custom control
packages. OLE and VBX controls don’t suffer from these limitations.

OLE rescues C++

But that’s where the next level of standardization comes in: binary interoperability. OLE uses
objects that have a predefined binary image. With binary objects, you can interact with objects
whose internal structure and implementation may be entirely unknown to you. If you develop an
OLE server object, its binary image and interface must be the same no matter how the object
was created. How is this done ? Well, Microsoft developed the Component Object Model (COM),
an object format standard that describes the exact binary interface of objects, and the way
calling applications interact with these objects. OLE objects are COM objects that support certain
basic operations, such as dragging, dropping, streamability, in-place activation, and so on.

The COM standard takes the concept of object from the source code level to the binary level —
not exactly a trivial accomplishment. Using OLE objects, it no longer matters whether an object
was created using C, Borland C++, Visual C++ ,or even Visual Basic. The external interface of
an OLE object is completely language independent. If you create an OLE object using C++. you
are required to give it a standard OLE interface that encapsulates the internal C++ interfaces,
hiding language-specific details like data members and mangled function names from users of
the object. With OLE, we’re finally on the road to full object interoperability. But beware, there
are still many obstacles on the road to full object-oriented application development, and it will be
a few more years before these problems are solved.

C++ rescues OLE

All this wonderful new OLE functionality comes at a price: complexity. Anyone who has read
anything on OLE programming will want to avoid dealing directly with the OLE API. There are

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 2

hundreds of functions, dozens of interfaces, problems with memory allocation, lists of registration
parameters, the list goes on and on. OLE seems to be a technology that everyone needs but few
find easy to implement.

Microsoft eased much of the pain of utilizing OLE by introducing MFC 2.5 in late 1993. Using the
new MFC classes, developing an OLE server or container is relatively easy (see Paul DiLascia’a
article “OLE Made Almost Easy: Creating Containers and Servers Using MFC 2.5”, MSJ Vol 9
No 4) — especially with AppWizard. Borland C++ had no application framework support for OLE
programmers until now. Borland C++ programmers can now also reap the benefits of OLE with
Borland C++ 4.5.

Covering Up the Mess

Borland waited so long to bring OLE support to C++ because it took a lot of time to design a
C++ package that would elegantly wrap up OLE, support all the OLE functionality, be easy to
use, and be independent of OWL. No small order. Borland wanted to wait until they felt they had
done it right. After spending a lot of time studying their design and code, I am ready to agree with
them. Not only did they hide the tremendous complexity of OLE, but the resulting classes make
good use of C++ constructs like multiple inheritance and polymorphism.

OLE objects don’t support inheritance or polymorphism or member access specifiers. After all,
OLE objects are not C++ objects, even though they might be implemented using C++. The
Borland OLE classes provide a level of insulation code around the OLE API that makes it
possible to use C++ constructs like inheritance with nonchalance. While C programmers are
forced to learn an entirely new API for OLE programming, with all the complexity of new
interfaces, Borland C++ programmers need only derive their OLE objects from an OLE class.
They simply inherit OLE capabilities. Borland C++ 4.5 supports the OLE functionality that comes
with Visual C++ 2.0, and in addition offers the following:

• Support for in-proc (DLL) OLE servers
• Support for OLE for non-OWL applications
• Support for self-registering servers

In MFC, OLE was implemented by adding new code and classes directly to MFC. If you want to
develop an OLE object using C++ classes in Visual C++, you must use MFC. Not so for Borland
C++. The classes that encapsulate OLE code are not part of OWL, but form an entirely new
class hierarchy of their own called the ObjectComponents Framework (OCF). It is possible for
programmers working in Visual C++ to use the OCF classes, a fact that could be of interest to
developers writing OLE servers that have no user interface of their own, and require no MFC
functionality.

The BOCOLE Engine

The first step in reducing the complexity of the OLE API was to encapsulate OLE in a package
that made available to applications all the normal OLE interfaces, but also added a number of
higher level ones. Borland christened the resulting product BOCOLE (Borland
ObjectComponents OLE). BOCOLE ships as a 16 bit DLL bundled with Borland C++ 4.5. The
DLL can be used by stand-alone applications that have nothing to do with Borland C++. In fact,
WordPerfect 6.1 and Paradox 5.0 were both OLE-enabled through the use of BOCOLE. Borland
C++ 4.5 ships with the full source code for BOCOLE.

Application developers often use high-level constructs such as the document/view model, in
which data is separated from the code that displays the data in a window. Providing OLE

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 3

support to such applications requires the repeated use of groups of low-level OLE interfaces and
functions. To simplify application development, Borland added a number of high-level interfaces
to BOCOLE that correspond to some of the commonly used application objects like Documents
and Views. BOCOLE therefore has high-level interfaces like IBWindow, IBDocument and IBView
that are built on top of lower level OLE interfaces like IDataObject, IUnknown and IClassFactory.
All the high level BOCOLE interfaces start with the letters IB (for Interface BOCOLE),.
Applications can call functions in the BOCOLE interfaces the same way they would call functions
in a native OLE interface.

BOCOLE defines internally a number of classes that correspond one-to-one to the interfaces
supported. For example, the OLE IClassFactory interface is supported with the class
IClassFactory, the IUnknown interface is supported by a class called IUnknown. The high level
BOCOLE interfaces also have matching classes, so the IBWindow interface is implemented by
an internal class called IBWindow.
 Figure 1 shows a list of the classes that encapsulate native OLE interfaces. Figure 2 shows the
classes that support higher level BOCOLE interfaces, built on top of the lower level OLE
interfaces.

OLE Interface Purpose
IClassFactory Creation of new objects
IDataObject Data transfer for clipboard

operations, drag and drop
IDispatch Automation support
IEnumVARIANT Accessing collections

contained inside
automated objects

IMalloc Memory allocation
IStorage Structured storage support
ITypeInfo Description of objects in

type libraries
ITypeLib Description of objects in

type libraries
IUnknown Universal Interface

Figure 1 - OLE interfaces encapsulated by low level BOCOLE classes.

BOCOLE Interface Purpose
IBApplication Frame window support for

container applications
IBClassMgr Support for aggregate objects
IBContainer Drag and drop with container

windows
IBContains Support for client containers
IBDataConsumer Data sink support
IBDataNegotiator Drag and drop support
IBDataProvider Clipboard Support
IBDocument General support for application

documents
IBDropDest Drag and drop
IBLinkable Moniker Support

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 4

IBLinkInfo Support for linked objects
IBPart Used by OCF container

applications to control
embedded/linked objects

IBRootLinkable Moniker support
IBService Clipboard support
IBSite Client container screen

management for linked/embedded
objects

IBWindow Support for main and child
windows in container applications

Figure 2 - High-level OLE interfaces supported by BOCOLE.

The beauty of using classes rather than interfaces is that you can use inheritance with classes,
so all the usual notation of a C++ program can be used in an OLE context. In C-style OLE, if you
have an object that supports the IUnknown interface and the IDispatch interface, you have to
create an object that supports all the functions of both interfaces. With BOCOLE, the class
IDispatch is derived from class IUnknown, so you only have to support the functions of the
IDispatch interface – the others are inherited from the base class IUnknown. You only override
those base class functions that you want to change. The name-mangling problem disappears
altogether in OLE, because function calls made through OLE interfaces are internally made by
ordinal number, not by name. OLE has a specification that spells out the order in which functions
must appear in the virtual function table (vtbl) for OLE objects. As long as a class’ vtbl is laid out
according the the OLE spec, everything works. For example, consider the OLE IUnknown
interface, which supports the functions QueryInterface, AddRef and Release. The OLE spec
says that IUnknown’s vtbl must have QueryInterface as the first function, then AddRef, then
Release. The C++ class defined like this:

class IUnknown {
 virtual HRESULT QueryInterface();
 virtual ULONG AddRef();
 virtual ULONG Release();
};

has a vtbl structure that matches the OLE spec. When an application obtains a pointer to an
object of class IUnknown and calls the function Release, OLE actually calls the function
referenced by the third entry in the vtbl. No actual function names are involved.

For each OLE interface, BOCOLE has a corresponding class, as discussed earlier. Some of the
higher level BOCOLE interfaces (like IBPart) support multiple interfaces, so they are derived
from other classes. Figure 3 shows the class hierarchy of the high-level interface classes of
BOCOLE.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 5

Figure 3 - The hierarchy of the BOCOLE high-level interface classes.

To see how inheritance works with BOCOLE classes, from the perspective of OLE interfaces,
consider the layout of the vtbl for an object of type IBWindow, as shown in figure 4.

IUnknown

IBApplication

IBClassMgr

IBContainer

IBContains

IBDataNegotiator
IBDataConsumer

IBDataProvider

IBDocument

IBDropDest

IBLinkable

IBLinkInfo

IBPart

IBRootLinkable

IBService

IBSite

IBWindow

IClassFactory

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 6

QueryInterface
AddRef
Release

GetWindow
GetWindowRect
GetWindowTitle
AppendWindowTitle
SetStatusText
RequestBorderSpace
SetBorderSpace
InsertContainerMenus
SetFrameMenu
RestoreUI
Accelerator
GetAccelerators

Figure 4 - The memory layout of the vtbl of a BOCOLE object of class IBWindow, supporting the
OLE IUnknown and BOCOLE IBWindow interfaces.

If an application calls the function Release, OLE internally calls the third function in the vtbl,
which correctly calls IUnknown::Release. If an application calls GetWindow, then the fourth
function in the vtbl will be correctly called. Inheritance is used extensively inside the BOCOLE
code, but from an OLE perspective there are only interfaces and vtbls to call functions through.
The BOCOLE code reaps all the benefits of C++ inheritance, remains completely compliant with
the OLE interface specs, and adds a number of high level interfaces on top of the low-level OLE
interfaces.

OCF = Object-Oriented OLE

The centerpiece of OLE programming in Borland C++ 4.5 is OCF, an entirely new C++ class
hierarchy. OCF calls functions exported by the BOCOLE DLL to deal with OLE, avoiding the
direct call of native OLE API functions. OCF is to OLE what OWL is to Windows. It wraps all the
nasty stuff up, and presents to you a clean object-oriented environment. When you develop an
application that requires OCF, you statically link the application code to the OCF library.
Although OCF can be used with programs written in C or Visual C++, OCF is not sold separately,
but bundled with Borland C++ 4.5, like BOCOLE. While BOCOLE deals primarily with OLE
interfaces, OCF has C++ classes that deal with higher-level concepts such as messaging and
callbacks. Figure 5 gives you a sense of how OCF fits into a typical application.

IUnknown interface

IBWindow interface

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 7

Figure 5 - The relationship between applications, OCF, BOCOLE and OLE.

When an application needs an OLE service (such as when embedding an OLE object), it calls an
OCF function, which will typically result in multiple lower-level calls to BOCOLE. Conversely,
when an application receives a notification message back from OCF, it needs to provide a
handler for it. If you develop your application using OWL with AppExpert, then all the code to call
OCF and handle OCF notifications is provided automatically. If you want to use OCF with an
older project, or may be a Visual C++ project, then you will need to add a number of calls to
OCF functions, and provide message handlers for notifications received from OCF.

Applications don’t need to be concerned whether a feature is carried out by BOCOLE alone or
OCF and BOCOLE together. In the remainder of this article, I will use the term OCF to indicate
the combined functionality of ObjectComponents Framework and BOCOLE, unless otherwise
specified. Most of the OLE functionality is handled automatically and transparently by OCF
classes, so users of OCF classes don’t need to be OLE API experts. OCF handles all the details
for the following OLE operations:

• Linking
• Embedding
• Clipboard operations
• Drag-and-drop
• Compound files
• Support for server applications as EXEs
• Support for server applicatrions as DLLs
• Automation
• Type library creation
• OLE registration
• Localization

A really nice feature of OCF is that it can be used both in Borland C++ based and Visual C++
based applications. If you created a Visual C++ app using AppWizard without enabling OLE,
there are only two ways you can add OLE to it (apart from the suicidal approach of low-level
coding of the OLE API calls): you rebuild a new OLE-enabled app and transfer all your code into
it, or you add OCF to the application. Using the second approach, you just add handlers for
messages originated or delegated to you by OCF, and call OCF functions to handle user actions

User
Application

OCF BOCOLE

OLE / OCF
Requests

OLE / OCF
Notifications

OLE / BOCOLE
Requests

OLE / BOCOLE
Notifications

OLE

OLE Notifications OLE Requests

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 8

that involve OLE operations. Borland provides a number of sample programs that show how to
use OCF to OLE-enable a generic application written in plain C. The code shown can easily be
adapted to applications using Visual C++.

OCF has classes that manage the functionality of OLE servers, containers, embedded objects,
linked objects, automated objects and automation controllers. All the classes are wrapped up in a
single package, and create the class hierarchy shown in figure 6. OCF class names normally
begin with the letters TOc.

Figure 6 - The complete OCF class hierarchy.

Connector Objects

If you embed or link an OLE object in a container, you want to be able to manipulate the object
as a C++ object, avoiding all the low-level OLE stuff. When you are create an OLE server you
also want to be able to handle painting in the view space of a client container using C++ objects.
OCF defines the classes TOcPart and TOcRemView to support these two situations. These
classes, along with a couple others, are called connector classes in OCF, because they connect
your application directly with an underlying OLE object.

TOcModule

TOcItemName

TOcFormatName

TOcPartSize

TOcFormat

TOcDocument

TOcItemLink

TOcFormatData

TOcInitInfo

TOcScaleFactor

TUnknown

TOcApp

TOcServedCOM

TOcPart

TOcDispatchCOM

TOcDataProvider

TOcView

TOcLinkView

TDispatch TOcRemView

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 9

If you create an OLE container using OCF, when you link or embed OLE objects in it, a TOcPart
is created dynamically for each object. Rather than interact directly with the low level OLE
interfaces of the linked/embedded objects, OCF calls members of TOcPart, which in turn
manipulate the OLE object connected to it. When you create a server object with OCF, an object
of type TOcRemView is allocated to handle painting of the object in the view space of client
containers. The server calls member functions of the TOcRemView connector object, which in
turns makes calls to BOCOLE and OLE to carry out the painting. Figure 7 shows a diagram of
the relationships between OCF connector objects, the user code and OLE.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 10

Figure 7 - The OCF connector classes, shown in light blue.

 COM Object
attached to a

connector object

TOcApp

TOcView

TOcPart

TOcRemView

BOCOLE

OLE Layer BOCOLE Layer OCF Layer

TOcDocument

OCF Connector Objects

User Code

Application Layer

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 11

How OCF connector objects are created

To see how connector objects are used inside OCF, let’s start by finding where connector objects
are created, and how they are attached to OLE objects. Assume you have an OLE container
application, that uses OCF. To embed an object, you use the Insert Object menu, which is a
standard menu that all OLE containers should support. Using the Insert Object menu, you bring
up a dialog box showing a list of all the OLE servers registered in your system. The dialog box
might look as shown in figure 8.

Figure 8 - The OLE Insert Object dialog box.

If you create the container using OWL with AppExpert, code is generated to automatically call all
the OCF functions to display the Insert Object dialog box and embed a new object of the
selected type. When you select an object type on the dialog box, OWL creates a TOcPart
connector object with information about the new OLE object being embedded.The whole
process is wrapped up inside the handler for the Insert Object command in the OWL class
TOleWindow, which looks something like this:

// OWL handler for the Edit Insert Object command
void TOleWindow::CmEditInsertObject()
{
// initialize an OLE information object
 TOcInitInfo initInfo(OcView);

 if (OcApp->Browse(initInfo)) {
 // open the Insert Object dialog box and
 // get the class ID of the object selected

 // set a default position and size for
 // the object being embedded
 TRect rect(30, 30, 100, 100);
 GetInsertPositon(rect);

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 12

 // create an OCF connector object
 TOcPart* embeddedObject =
 new TOcPart(*OcDoc, initInfo, rect);

 // select the newly embedded object
 SetSelection(embeddedObject);
 }
}

The OCF function TOcApp::Browse(TOcInitInfo& init) calls into the BOCOLE code, with
the code

BServiceI->Browse(&init) ;

which calls the BOCOLE function IBService::Browse, which calls the OLE function
OleUIInsertObject(), which in turn displays the dialog box in figure 8. When the user selects
an OLE object type and clicks the OK button, the call to TOcApp::Browse(TOcInitInfo&
initInfo) returns, with the variable initInfo holding a valid OLE class ID. The code then
invokes the constructor for TOcPart, passing the class ID in initInfo. The constructor does
some internal initialization, then calls TOcApp::BOleComponentCreate() to create an OLE
object to connect itself to. The latter function calls into BOCOLE to create the actual OLE object
that the TOcPart object then connects itself to. The entire process is shown graphically in figure
9.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 13

Figure 9 - The activity involved in creating an ObjectComponents TOcPart connector object.

Does figure 9 look like something you want to be part of? I don’t think so, but using OCF you
don’t need to know about the details that occur below the OCF layer. If you use AppExpert to
create your application, you generally won’t need to add additional code to support OLE.

Handler for Edit
Insert Object
command

TOcAppBrowse

Application
Layer OCF Layer BOCOLE Layer

BOleServiceBrowse

OLE displays the
Insert Object dialog
box. User makes
selection.

class ID

TOcPart
new

TOcApp

BOleComponentCreate

OleUIInsertObject

BOlePartCreateFromBOleInitInfo

OLE creates the
object, and the
TOcPart and
connects to it.

OleCreate

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 14

Manipulating embedded objects through OCF connectors

Having created a TOcPart connector object in the previous section, I’ll show how a container
application would manipulate an embedded object through TOcPart member function calls.
Containers must have a window in order to display embedded or linked objects. This window
must be associated with a TOcView connector object, which knows how to paint the embedded or
linked objects. The embedded or linked objects must be associated by connector objects of class
TOcPart, allowing you to use standard C++ notation to manipulate the objects:

// assume myServer points to some
// kind of embedded or linked object
TOcPart* myServer;

if (!myServer->IsVisible())

 // change the size of the object
 Tsize size(30, 30, 100, 100);
 myServer->SetSize(size);

 // make sure the server is visible
 myServer->Show(True);
}

If you use AppExpert, you won’t need to write any code to manipulate OCF objects, because all
the code is generated for you. You will need to create and manipulate OCF connector objects if
your app was not created with AppExpert, or if was written in C or Visual C++. The Borland
sample programs show exactly what OCF code needs to added, and where.

The big picture

The only way to fully grasp how OCF works is to study a complete example. In the next few
sections I’ll show how OWL servers and containers link through OCF, then BOCOLE down into
OLE, and then how OLE links back to your application.

Since AppExpert creates OWL code that calls OCF code, I’ll discuss the implementation of a
simple OLE server app that uses OWL. Let’s assume you want to create a small OLE server that
works like a pocket calculator, as shown in figure 10.

Figure 10 - A simple calculator server.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 15

You enter values into the calculator by clicking the buttons with the mouse. Results are displayed
in the black area at the top of the calculator. The first step is to create an OCF-enabled
application, so the server’s application class will need to be multiply derived from the OWL class
TApplication and the OCF class TOcModule. The server’s main window must also be OLE-
enabled, so it must be derived from the OWL class TOleFrame, which uses an internal OCF
connector object of type TOcApp to handle OLE messages.

When you register the server with the system, your server’s code lies dormant until a client
container application invokes it (by embedding, linking or automation). Assuming the container
embeds your server, the first flurry of activity involves the creation of the OLE server object in
memory, which I outlined from the container’s point of view in figure 9. But there is a whole
bunch of activity that occurrs on the server object being embedded that doesn’t show up in figure
9. The server code is only triggered into action with the OleCreate() call.

How OCF talks to OLE

When OleCreate is executed, the server app is run. When the container application manipulates
the embedded server using a TOcPart connector object, several layers of code are called into
action. Figure 11 shows what happens when the container does something like

myServer->Show(True);

Figure 11 - How a client container requests an embedded server to show itself.

The function Show is a very simple one, because it doesn’t involve user application code. OCF
and BOCOLE have code to completely process a Show command. The application code
Show(True) invokes the OCF function TOcPart::Show, which invokes the BOCOLE function
IBPart::Show. IBPart is one of the high-level interfaces supported by BOCOLE. Calling
functions of IBPart generally results in several lower level standard OLE functions being called.

Container TOcPartShow(True) BOlePartIBPart::Show(True)

Application Layer OCF Layer BOCOLE Layer

myServer

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 16

How OLE talks to OCF

Figure 11 isn’t complete. When the IBPart::Show function is executed, OLE must vector the
call to the appropriate function in the server. What IBPart::Show does is call the DoVerb
function of the embedded object’s IOleObject interface, passing the verb OLEIVERB_SHOW,
which then makes the embedded object visible:

HRESULT BOlePart::Show (BOOL bShow)
{
 if (bShow) {
 HRESULT hRes = DoVerb(OLEIVERB_SHOW);
 pSite->Invalidate(BOLE_INVAL_VIEW);
 return hRes;
 }
 else {
 return pOleObject->DoVerb(OLEIVERB_HIDE,
 NULL, this, 0,
 pContainer->GetWindow(),
 (LPRECT) 0);
 }
}

Calling TOcPart::Show(bool) is a simple way of controlling an embedded object, because the
command can be entirely processed by low-level BOCOLE code.

A more complicated (and more typical) process is set into motion when doing things like telling
an embedded object to paint itself. There are no default paint handlers in BOCOLE, so the
request must filter up through the BOCOLE layer and connect to some C++ function in the
server’s OCF code. Assume the container wants the embedded object to paint itself in the
container’s view space. The container will call the function TOcPart::Draw, which filters down to
BOCOLE and calls the Draw function of the server’s IViewObject interface, which then calls the
member function Draw of the server’s OCF connector class TOcRemView. This Draw function
does some internal processing, then sends a special WM_OCEVENT message to the view
window.

WM_OCEVENT is an OCF-specific message that is used to pass OLE requests and information
to the user application. Most operations performed on an embedded object result in some kind of
WM_OCEVENT notification being sent to the server’s view window. The WPARAM parameter
carries an OCF notification code, and LPARAM contains additional notification data. Using
Borland C++, messages are processed and dispatched using structures called Event Response
Tables (EVTs), which are equivalent to Visual C++ message maps.To process WM_OCEVENT
notifications, you add handlers to a window’s EVT. To handle the OC_VIEWPAINT notification,
you would add an EV_OC_VIEWPAINT entry:

DEFINE_RESPONSE_TABLE1(TMyOleContainerWindow, TOleContainerWindow)

 EV_OC_VIEWPAINT,

END_RESPONSE_TABLE;

When a WM_OCEVENT message is sent to the window with the notification code
OC_VIEWPAINT in WPARAM, OCF will automatically call the handler EvOcViewPaint.Each
notification code has a predefined handler name. WM_OCEVENT messages can be sent both to
servers and containers. Figure 12 lists the types of WM_OCEVENT notifications that OCF can
generate.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 17

Notification Code Description
OC_APPBORDERSPACEREQ Requests a container for border space to display a frame
OC_APPBORDERSPACESET Sets the amount of border space used to display a frame
OC_APPDIALOGHELP Help button was pressed on a standard OLE dialog box
OC_APPFRAMERECT Gets the inner rectangle of the main window
OC_APPINSMENUS Inserts menus of embedded/linked object into main menu
OC_APPMENUS Sets main menu of the application
OC_APPPROCESSMSG Processes accelerator key messages
OC_APPRESTOREUI Eliminates the toolbar and menu items added to the

application for an activated linked/embedded object
OC_APPSHUTDOWN Closes the main window
OC_APPSTATUSTEXT Sets the text on the status line
OC_VIEWATTACHWINDOW Server attaches itself to an owner window.
OC_VIEWBREAKLINK Server breaks a link to an item.
OC_VIEWCLIPDATA Server renders its data in a given format.
OC_VIEWCLOSE Server closes its remote view in the container view space.
OC_VIEWDRAG A linked/embedded object is being dragged. Give feedback

to the container application and the user.
OC_VIEWDROP An object is being embedded into a container by a drop

operation.
OC_VIEWGETITEMNAME Server names its contents or selection.
OC_VIEWGETPALETTE Server returns the palette used to draw its view.
OC_VIEWGETSCALE Asks a container for view scaling information
OC_VIEWGETSITERECT Asks a container for the bounding rectangle of the view site
OC_VIEWINMENUS Server inserts its own menus in the container’s menu bar.
OC_VIEWLOADPART Server loads its document data.
OC_VIEWOPENDOC Asks a container to open an exisiting document
OC_VIEWPAINT Server paints itself in the container’s view space.
OC_VIEWPARTINVALID A linked/embedded object was invalidated
OC_VIEWPARTSIZE Requests the view extent of a linked/embedded object
OC_VIEWSAVEPART Server saves itself in a compound file
OC_VIEWSCROLL Requests a linked/embedded object to scroll its view
OC_VIEWSETLINK Server establishes a link to an item.
OC_VIEWSETSCALE Servers sets up scaling information.
OC_VIEWSETSITERECT Requests a container to set the size of the bounding

rectangle of the view of a linked/embedded object
OC_VIEWSETTITLE Sets the window title
OC_VIEWSHOWTOOLS Server displays its toolbar in the container’s view space.
OC_VIEWTITLE Requests the window title of a view

Figure 12 - The OCF notifications sent with WM_OCEVENT messages.

The handling of notifications through EVT dispatching fits very well into OWL, because it is an
extension of the event-handling mechanism already used to dispatch child control notifications
and regular Windows messages.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 18

Persistence

Given the ability to embed server objects inside containers, the container must be able to
serialize the embedded objects. For example, if I create a simple container with embedded
Microsoft Word documents, my container should have the ability to save the Word documents to
a file and later read those documents back in. OLE uses the Structured Storage Model and
compound files to store documents that have embedded objects.

In a nutshell, a compound file is made up of storages and streams. A storage is equivalent to a
sub-directory (inside the compound file) and the stream is equivalent to a file (again, inside the
compound file). A compound file lets you save documents with objects embedded recursively to
any depth.

Conceptually, compound files are simple, but using the low level OLE API for structured storage
can be very complex. There are several interfaces, like IStorage, IStream, ILockBytes, and
dozens of different functions. OCF and OWL makes working with compound files a breeze.
When you create a server object, you derive its document class from TOleDocument. This class
is derived from TStorageDocument, which is derived from the standard OWL document-
handling class TDocument. Class TOleDocument uses an internal OCF object of type
TOcDocument to handle basic document serialization support. Class TStorageDocument puts a
C++ stream interface around the low-level structured storage OLE interfaces. To support
serialization of a user document derived from TOleDocument, you must override the member
functions Commit and Open, like this:

class MyServer: public TOleDocument {
 // declare some user data;
 int a;
 float b;
 .
 .
 .
};

bool MyServer::Commit(bool force)
{
 // get an output stream to use
 // with an OLE compound file
 TOutStream* os = OutStream(ofWrite);
 if (!os) return false;

 // save our document data
 *os << a << ‘ ‘ << b;

 TOleDocument::Commit(force); // save all objects embedded
 // in the server and commit the
 // transacted storage

 delete os;
return true;
}

bool MyServer::Open(int mode, const char* path)
{
 TOleDocument::Open(mode, path); // read all objects embedded
 // in the server

 if (GetDocPath()) {
 // get an input stream to use for reading
 // an OLE compound file
 TInStream* is = (TInStream*)InStream(ofRead);
 if (!is) return false;

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 19

 // read our user data from the compound file
 *is >> a >> b;
 delete is;
}
 return true;
}

The reading and writing is handled using standard C++ stream insertion and extraction operators.
The base class TStorageDocument handles the instantiation of the OCF stream objects that
support these operators. The input stream is of type TStorageInStream, the output stream of
type TStorageOutStream. The stream objects are allocated dynamically by
TStorageDocument, so you must delete them yourself.

Server objects linked or embedded in a client container don’t read or write to compound files on
their own. It is the client container that controls when its contained objects read or write
themselves. Containers implemented using OWL use the same class to handle their document
data as servers — a class derived from TOleDocument. Assume this class is called
TMyOleDocument. When the user executes a File Save command for one of its windows
containing linked/embedded objects, the container’s document manager invokes
TOleMyDocument::Commit. This function saves any private data the document may have, and
invokes the base class to write all linked/embedded objects out to storage. The Commit code is
essentially the same for containers and servers.

When the user opens a compound file, the application’s document manager invokes the member
function TMyOleDocument::Open, which reads in any private data you might have, and then
invokes the base class to read in any linked/embedded objects that were saved. Again, the Open
code is essentially the same for containers and servers. You aren’t required to use OWL in your
application, but it comes very naturally, since AppExpert generates OWL code with embedded
calls to OCF objects that do the grunt work. If you use Visual C++ or C, then you will need to
look at one of the Borland sample programs to see exactly where you need to add OCF objects
to your app.

Inheritance with OCF

Since OCF is a C++ class hierarchy, it follows that you can use standard C++ inheritance to
derive new classes from OCF classes. As mentioned earlier, to create a server you multiply
derive a class from the classes TApplication and TOcModule, like this;

class TMyServer: public TApplication, public TOcModule {...};

Don’t get too excited: inheritance is limited to building OLE objects from C++ classes. It isn’t
currently possible to use inheritance to derive one OLE object from another. For example, given
an OLE server called Furniture, you can’t create a new Chair server by deriving it from
Furniture. Obviously, if you have the source code for Furniture, then you can use it to derive
some kind of Chair class:

class Chair: public Furniture {...};

but you still have to transform the new class into an OLE object.I It is possible to create a system
in which objects dynamically inherit from other objects at run-time, but OLE doesn’t attempt to
deal with such problems.

There is a way to put objects together that’s reminiscent of inheritance known as aggregation.
Using aggregation, you can basically chain together separately allocated and implemented
objects, so that one object appears to have inherited functionality from the other.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 20

OCF defines the class TUnknown that can be used to encapsulate an OLE object’s IUnknown
interface, with support for aggregated objects. Objects aggregated inside TUnknown must also
have TUnknown encapsulation. Figure 13 shows the relationship between aggregate and
aggregated OLE objects in TUnknown.

Figure 13 - A TUnknown object containing aggregated TUnknown objects inside it.

From the outside, OLE see only one IUnknown interface. The IUnknowns of the aggregated
objects are hidden inside the aggregate object. When the user requests the aggregate object for
an interface it doesn’t support directly, the request is passed on to each of the aggregate objects.
If one of the objects has the requested interface, it is returned to the caller. To OLE, it appears
that the interfaces of all the aggregated objects are supported by the single OLE object. OLE is
unaware that class TUnknown even exists. It isn’t exactly inheritance, but the results are similar.

Creating an OLE Container

Now that most of the small details have been taken care of, it’s time to see some code in action.
Borland C++ 4.5 makes it very easy to create an OLE container, because AppExpert is now
OLE-aware. Using the AppExpert (which is similar to the Visual C++ AppWizard), click on the
OLE options you want, hit the Generate button, and you wind up with a complete project to start
off your OLE container application. AppExpert is essentially a one-shot deal: once you generate
an application, you can’t add features at a later time by running AppExpert on it again.
AppExpert doesn’t know how to take an existing project (regardless of whether it was written in
Visual C++, Borland C++ or other), and add new features to it. It creates a brand new project
every time.

 To demonstrate everything, I created an app called CONTAIN using AppExpert. To launch
AppExpert, you select the Project AppExpert command from the main menu (see figure 14).

IUnknown

internally visible IUnknown interfaces
TUnknown

Aggregate
object

Aggregated
objects

TUnknown TUnknown TUnknown

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 21

Figure 14 - The AppExpert window, showing the OLE options.

I clicked the Container option, gave the project a name, chose the MDI app type and that’s about
it. What I wound up with were seven files with roughly 1400 lines of source code. The simple app
supported basic things such as File New and File Open, but most importantly, the Edit menu
had an item called Insert Object. As mentioned earlier, this command allows you to insert OLE
objects into an application, and displays a standard OLE Insert Object dialog box with a list of
the OLE objects registered in the system.

To see how inserting an OLE object works, I ran CONTAIN and selected Edit Insert Object. I
chose the object type Microsoft Word 6.0 Document, and wound up with a small Word object in
an MDI child window of CONTAIN. I double-clicked the Word object to in-place activate Word,
and wound up with an empty Word window with a ruler (see figure 15).

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 22

Figure 15 - An in-place activated Word 6.0 object.

I typed some text, added an embedded picture and some formatted text, and closed Word, to
see if all the features would show up unchanged in CONTAIN. Sure enough they did, and I
wound up with a window that looks like figure 16.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 23

Figure 16 - The de-activated Word object, showing an embedded picture and formatted text.

One of the less-obvious features of an OLE container app is the ability to save embedded
objects in a file. The new structured storage of OLE 2.0 is completely supported by the OCF. I
put CONTAIN to the test. I selected File Save As, and entered a filename. I closed the child
window with the embedded Word object, then used the File Open command. The child window
returned, with its embedded document. There’s an awful lot going on to make all this happen!

Creating an OLE Server

Using AppExpert, it is just as easy to create a server or even a container-server as it is to create
a container. AppExpert lets you create both EXE and DLL servers. For example, I brought up
AppExpert and selected the options MDI and OLE EXE Server. After a few seconds, I had the
source code for an application called SERVER. First I tested SERVER by running it from the File
Manager, as a standalone Windows app. When you run a server built with Borland C++ 4.5,
there is no need to manually register it: servers register themselves. SERVER is very simple,
just supporting plain empty MDI child windows (see figure 17).

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 24

Figure 17 - How SERVER looks, after opening a child window.

Next, I tried to embed two separate objects in an MDI child window of CONTAIN, a Word 6.0
object and a SERVER object. Figure 18 shows how the child window looked with the two
embedded objects.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 25

Figure 18 - A child window of CONTAIN, showing an embedded Word object, and an embedded
SERVER object created with AppExpert.

Automation Support

Conceptually, an automated object is simply an OLE object that exposes some of its methods
and properties to OLE containers. The exposed items can then be referenced from OLE
containers that link to or embed the automated objects. The OLE automation technology does
not rely on linking or embedding to work, but automation is still a rather complex beast. It
requires stuff like registration attributes, type libraries, OLE storage allocators, macros for
declaring and exposing methods and properties, and the list goes on... (For more details see the
article “Application Interoperability with Visual Basic for Applications and OLE 2.0” by Joshua
Trupin, MSJ Vol 9, No 2). Fortunately, Borland C++ acts as a liaison between you and the OLE
automation details -- AppExpert creates the groundwork, and ClassExpert fills in the remaining
details.

Exposing functionality

An automation controller can’t necessarily get to ALL methods or properties of an automated
object, only to those methods and properties that have been exposed. OCF uses macros to
expose member functions (methods) and properties (data members).

Consider creating the old pocket calculator in figure 9 as an automated server. If you want clients
(automation controllers) to be able to press the buttons on the calculator, you might expose a
method called Press that takes a string parameter and returns void. Say you also want your

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 26

automated calculator to expose a property, such as the value displayed in the result window. The
first step is to use a couple of macros: one for declaration and one for implementation purposes,
much like the macros used to set up event response tables.

The ClassExpert that comes with Borland C++ 4.5 fully supports automation code. To automate
a class, you simply turn on ClassExpert, select a class in the Class Browser Pane, right-click the
mouse on the class, and select the Automate class command from the popup menu (see figure
19).

Figure 19 - Using the Borland ClassExpert to automate a class.

One of the neatest tricks Borland added to the new ClassExpert is the ability to add automation
to an application that had been created without it. ClassExpert is able to detect applications that
are being upgraded to automation, and add all the necessary code for you. The only proviso is
that you created the original app using AppExpert.

Once you have enabled automation for a class, you can use the ClassExpert to expose
properties and methods. Figure 20 shows the Events Pane, with a new entry called Automation,
supporting the addition and deletion of properties and methods.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 27

Figure 20 - Adding an automation method using the ClassExpert.

Although ClassExpert handles all the details for you, it is interesting to see what actually happens
to your code. If you automated a calculator application that exposed the Total property and the
Press method, your application class would be declared something like this:

class TMyCalculator : public Tapplication, public TOcModule {

 .
 .
 .
 // automation methods and properties exposed
DECLARE_AUTOCLASS(TMyCalculator)
 AUTOFUNC1V(PressButton, Press, string)
 AUTODATA(Result, Total, double)
};

The DECLARE_AUTOCLASS macro supports a number of different line-item macros to declare
methods and properties. For example, the macro AUTOFUNC1V above declares a method with the
following characteristics:

• Internal name TMyCalculator::PressButton
• External name: Press
• Number of parameters accepted: 1
• Parameter type: string
• Return type: void

The internal name of a method or property is the identifier used in the source code. The external
name is the identifier you want users to see through OLE. For example, if you exposed a method
with the external name DoSomething, then DoSomething would be listed as one of the verbs
available for your automated object. The internal and external names of properties and methods
don’t need to be the same, although frequently they are. The macro AUTOFUNC1V exposes a void
function taking a single parameter of type string, and is defined like this:

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 28

#define AUTOFUNC1V(name, func, type1, defs) \
 AUTOFUNC_(name, This->func(Arg1);, defs, \
 DEFARGS1(type1), BLDARGS1(type1), CTRARGS1(type1), SETARGS1)

There is an elaborate succession of macros that call one another. The final result is a list of type
identifiers, that are subsequently used to create a data structure that defines the exposed
methods and properties.The macro AUTODATA shown above exposes a property with the
following characteristics:

• Internal name: Result
• External name: Total
• Type: double

After declaring exposed items, you need to add another set of macros to implement the code
that will hook up with OLE to physically make the items available to OLE. Again, ClassExpert
does all the work for you. Using the calculator example, the macros might look like this:

DEFINE_AUTOCLASS(TMyCalculator)
 EXPOSE_PROPRW(Result, TAutoDouble, "Total",
 "The value shown in the result window", 0)
 EXPOSE_METHOD(PressButton, TAutoVoid, "Press",
 "Press one of the calculator buttons", 0)
 REQUIRED_ARG(TAutoString, "keys")
 EXPOSE_APPLICATION(TMyCalculator, "Application",
 "TMyCalculator Application Object", 0)
END_AUTOCLASS(TMyCalculator, "TMyCalculator",
 "Automated OLE Calculator", 0)

The EXPOSE_PROPRW exposes a property of type double that can be both read and written by
client controllers. The internal name of the property is Result and the external name is Total.
There are equivalent macros for exposing read-only and read-write properties of all types.
The fourth parameter passed to EXPOSE_PROPRW is a description string, displayed when the user
browses the automated object from an automation controller. The last parameter in the EXPOSE
macros is a help context value. The example above has zeros, but if you supply a nonzero
value, users will be able to invoke Windows Help regarding the exposed method or property, to
get information on what the method/property does and how to usw it. Obviously adding a help
context requires you to also provide a help file.

Exposing a method (member function) is a bit more complicated than exposing a property,
because you have to define the return type and the number/type of the arguments. The
EXPOSE_METHOD macro shown above defines a method whose internal name is PressButton,
returning void. The external name made available to OLE is Press, and the method requires a
single parameter of type TAutoString, which is a standard C++ string.

The last macro used above – EXPOSE_APPLICATION – registers some additional information
about the automated object, allowing other applications to use the OLE IClassFactory interface
to create new instances of the object. The use of this macro is recommended to adhere to OLE
conventions.

Automation Proxy Objects

Okay, so I created an automated object with a whole bunch of macros (actually, ClassExpert did
the work). But how does a controller application control the automated object? What you’d like to
do is manipulate the automated object like a regular C++ object, something like this:

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 29

// define a C++ calculator OLE object
TMyAutomatedCalculator calculator;

// connect the calculator object to an OLE object
 .
 .
 .

// and use the calculator as a regular C++ object...

// find the value of 95 / 13
calculator.Press(“95”);
calculator.Press(“/”);
calculator.Press(“13”);
double result = calculator.Total();

Using Borland C++ (with or without OWL), you can make things work pretty much this way, but
only after enlisting the services of a C++ class that connects to the automated object’s OLE
interface. Such a class is called an automation proxy class in Borland C++.
TMyAutomatedCalculator, above is a proxy class. Proxy classes are declared the same way as
any other class, except they are derived from TAutoProxy. What’s different about Proxy classes
is that you don’t write them yourself. The Borland utility program AUTOGEN creates the class
declaration and source code for you. There are actually a couple of steps in developing proxy
classes. First you create an automated object, with the EXPOSE macros described eariler. Then
you run the object from the File Maanager, passing the command line argument -TypeLib. The
OCF code in the object detects this special command string, and automatically generates a type
library, with an OLB file extension. Then you run the AUTOGEN utility, passing it the name of the
OLB type library, which then creates the proxy class. The proxy class for the sample calculator
described earlier would look something like this:

class TMyAutomatedCalculator: public TAutoProxy {

public:

 TMyAutomatedCalculator() : TAutoProxy(0x409) {}
 double GetTotal();
 void SetTotal(double);
 void Press(TAutoString keys);
};

The hex value passed by the constructor to the base class represents the locale setting to use.
The value 0x409 is the locale ID for American English. AUTOGEN determines the locale ID from
the system setting.

Each read-write property gets two access functions: one to read and one to write the property.
OLE function names cannot be overloaded, because name mangling is not supported.

Proxy classes don’t have data members – just member functions. To access properties in an
automated object, you use the access member functions in the proxy object. The class
declaration for a proxy object requires that each member function be connected to the OLE
interface of the connected OLE automated object, but AUTOGEN does this for you. The calculator
code would look something like this:

double TMyAutomatedCalculator::GetTotal()
{
 AUTONAMES0(“GetTotal”)
 AUTOARGS0()
 AUTOCALL_PROP_GET
}

void TMyAutomatedCalculator::SetTotal(double value)

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 30

{
 AUTONAMES0(“SetTotal”)
 AUTOARGS1(value)
 AUTOCALL_PROP_SET
}

void TMyAutomatedCalculator::Press(TAutoString keys)
{
 AUTONAMES0(“Press”)
 AUTOARGS1(keys)
 AUTOCALL_METHOD_VOID
}

Now you have almost everything needed to use the TMyAutomatedCalculator proxy object in
an OLE automation controller. The last thing is to connect the proxy object to a physical OLE
object. The proxy class has no knowledge of what class ID that underlying OLE object has, so
you need to supply the necessary information. Simply provide the OLE object’s program ID as
registered in the OLE registry. If the calculator server was registered with the ID
MyCalculator.Application, use code like this:

// define a proxy object
TMyAutomatedCalculator calculator;

// bind the object to an OLE object
calculator.Bind(“MyCalculator.Application”);

// use the calculator...

You don’t have to unbind the proxy object from the OLE object when the proxy object goes out of
scope, because the its destructor does the unbinding automatically and deletes the OLE object.

Ugly, Huge, Complex, but Great

OLE is ugly. OLE is huge. OLE is complex. But OLE is also great, and it promises to make
program development much simple, with frameworks like MFC and OWL. There are several key
technologies that still have to be invented or stabilized before you can use off-the-shelf objects
to build complete OLE programs with minimal coding. One essential piece missing is the ability
to embed or link to objects over a network. Another is the ability to store and retrieve objects
from databases, in a manner that allows any program to use them, without knowledge of their
internal structure. A final piece is a standard for defining generic high-level software interfaces,
akin to the IC standards long used by hardware engineers.

Borland C++ 4.5 helps tremendously in building OLE servers and containers. I took you through
a pretty fast tour of the OLE support Borland added to its flagship C++ compiler. There are many
features of the package I didn’t discuss in detail.

I was slightly disappointed to see that support for OLE Custom Controls was not included in
version 4.5, but Borland says it will be in the next release. The OCX SDK was still in beta when
4.5 was being developed. Overall, I found Borland C++ 4.5 to be a great improvement over its
predecessor. Using the OCF class TUnknown, it is now possible to develop aggregate objects
that are C++ on the inside and OLE on the outside. Such objects are like software components
that can reuse each other at runtime, taking us one step closer to full component-based software
development. Apart from the OCX aspect, Borland C++ 4.5 support for OLE is not only
complete, but also very well-thought-out and elegant.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 31

SideBar - Using OCF with MFC

OCF is not tied to OWL in any way, allowing MFC programmers and others to incorporate OCF
in their programs. Having said this, I don’t necessarily recommend MFC programmers to flock to
Borland for OLE support, since MFC provides all the necessary functionality almost for free.
Even though OCF can be added to an MFC app, the task isn’t exactly trivial. In any event, it is
interesting to see how an MFC program would incorporate OCF, so I’ll describe the steps to
create an OLE MDI container application with MFC using OCF. I won’t show all the code,
because the details would obscure the overall discussion.

The MDI application’s main window and its MDI child windows need to create an OCF object,
known as a helper object, to handle all OLE-related events. To keep things tidy, the best
approach is to derive classes from CMDIFrameWnd and CMDIChildWnd, adding the necessary
code to create, destroy and handle the OCF helper objects. You then derive your own MDI frame
window and child windows from the new OCF-empowered classes. Here’s how you would declare
the main OCF-aware window, from which your own main window would be derived:

class CMDIFrameOCF : public CMDIFrameWnd {

 protected:

 TOleFrameWin* OCFHelper;

 afx_msg int OnCreate(LPCREATESTRUCT);
 afx_msg void OnDestroy();
 afx_msg LRESULT OnOcEvent(WPARAM, LPARAM);

 // OCF event handlers
 BOOL OnOcAppFrameRect(HWND hwnd, TRect far* rect);
 BOOL OnOcAppInsMenus(HWND hwnd, TOcMenuDescr far* sharedMenu);
 BOOL OnOcAppMenus(HWND hwnd, TOcMenuDescr far* menuDescr);
 BOOL OnOcAppProcessMsg(HWND, MSG far*);
 BOOL OnOcAppBorderSpaceReq(HWND, TRect far*);
 BOOL OnOcAppBorderSpaceSet(HWND hwnd, TRect far* rect);
 void OnOcAppStatusText(HWND, const char far* text);
 void OnOcAppRestoreUI(HWND hwnd);};

 DECLARE_MESSAGE_MAP()
};

The OCF helper object is created and destroyed in the OnCreate and OnDestroy functions. The
member function OnOcEvent handles all WM_OCEVENT messages generated by OCF and
dispatches them to the specialized event handlers like OnOcAppFrameRect. For each OCF
notification listed in figure 12 there can be a specialized handler. My example only has 8
handlers, but you get the idea. OnOcEvent cracks the message parameters, calling handlers with
arguments of the correct type. The handlers in my examples mostly return TRUE or FALSE values,
making OCF carry out default actions. The code for CMDIFrameWnd is shown in figure 21.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 32

BEGIN_MESSAGE_MAP(CMDIFrameOCF, CMDIFrameWnd)
 ON_WM_CREATE()
 ON_WM_DESTROY()
 ON_MESSAGE(WM_OCEVENT, OnOcEvent)
END_MESSAGE_MAP()

int CMDIFrameOCF::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 int val = CMDIFrameWnd::OnCreate(lpCreateStruct);

 OCFHelper = new TOleFrameWin(m_hWnd);
 OCFHelper->OnCreate();
 return val;
}

void CMDIFrameOCF::OnDestroy()
{
 CMDIFrameWnd::OnDestroy();

 OCFHelper->OnDestroy();
 delete OCFHelper;
 OCFHelper = 0;
}

bool CMDIFrameOCF::OnOcAppFrameRect(HWND hwnd,
 TRect far* rect)
{
 GetClientRect(*((CRect*)rect));
 return true;
}

bool CMDIFrameOCF::OnOcAppInsMenus(HWND hwnd,
 TOcMenuDescr far* sharedMenu)
{
 return false;
}

bool CMDIFrameOCF::OnOcAppMenus(HWND hwnd,
 TOcMenuDescr far* menuDescr)
{
 return false;
}

bool CMDIFrameOCF::OnOcAppProcessMsg(HWND, MSG far*)
{
 return false;
}

bool CMDIFrameOCF::OnOcAppBorderSpaceReq(HWND, TRect far*)
{
 return true;
}

bool CMDIFrameOCF::OnOcAppBorderSpaceSet(HWND hwnd,
 TRect far* rect)
{
 return false;
}

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 33

void CMDIFrameOCF::OnOcAppStatusText(HWND,
 const char far* text)
{
}

void CMDIFrameOCF::OnOcAppRestoreUI(HWND hwnd) {}

LRESULT CMDIFrameOCF::OnOcEvent(WPARAM wParam, LPARAM lParam)
{
 switch (wParam) {

 case OC_APPFRAMERECT:
 return (LRESULT) (UINT)

 OnOcAppFrameRect(m_hWnd, (TRect far*)(lParam));

 case OC_APPBORDERSPACESET:
 return (LRESULT) (UINT)
 OnOcAppBorderSpaceSet(m_hWnd, (TRect far*)(lParam));

 case OC_APPBORDERSPACEREQ:
 return (LRESULT) (UINT)
 OnOcAppBorderSpaceReq(m_hWnd, (TRect far*)(lParam));

 case OC_APPINSMENUS:
 return (LRESULT) (UINT) (BOOL)
 OnOcAppInsMenus(m_hWnd, TOcMenuDescr far*)(lParam));

 case OC_APPMENUS:
 return (LRESULT) (UINT) (BOOL)
 OnOcAppMenusnd(m_hWnd, (TOcMenuDescr far*)(lParam)));

 case OC_APPRESTOREUI:
 return OnOcAppRestoreUI(m_hWnd, 0L));

 default:
 return 0;
 }
}

Figure 21 - The implementation of an MFC MDI main frame window with an OCF helper object.

To support MDI child windows, you need to create a class equivalent to CMDIFrameOCF, but
derived from CMDIChildWnd, like this:

class CMDIChildOCF : public CMDIChildWnd {

 protected:

 TOleWin* OCFHelper;

 // message handlers
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnDestroy();
 afx_msg void OnLButtonDown(UINT nFlags, CPoint pt);
 afx_msg void OnLButtonDblClk(UINT nFlags, CPoint pt);
 afx_msg void OnSize(UINT type, int cx, int cy);
 afx_msg LRESULT OnOcEvent(WPARAM wp, LPARAM lp);
 afx_msg void OnUpdateInsertObject(CCmdUI* pCmdUI);
 afx_msg void OnInsertObject();

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 34

 DECLARE_MESSAGE_MAP()
};

Class CMDIChildOCF is a little different from CMDIFrameOCF, because instead of having handlers
for OCF events, it has handlers for standard Windows messages, like WM_LBUTTONDOWN and
WM_SIZE. Class CMDIFrameOCF doesn’t have any such handlers because it is only capable of
responding to OCF notifications (via OnOcEvent), while class CMDIChildOCF is also able to
initiate OCF actions in response to certain Windows messages. For example if the user resizes
an MDI child window that contains embedded OLE objects, then the window will need to notify
OCF in response to a WM_SIZE message, so OCF can go off and resize the embedded objects.
Class CMDIChildOCF also needs to handle direct OLE operations like Insert Object, delegating
the call to the OCF helper object. To handle OCF notifications, class CMDIChildOCF simply
passes the messages along to the helper object. The code for CMDIChildOCF is shown in figure
22.

BEGIN_MESSAGE_MAP(CMDIChildOCF, CMDIChildWnd)
 ON_WM_CREATE()
 ON_WM_DESTROY()
 ON_WM_LBUTTONDOWN()
 ON_WM_LBUTTONDBLCLK()
 ON_WM_SIZE()
 ON_UPDATE_COMMAND_UI(CM_EDITINSERTOBJECT, OnUpdateInsertObject)
 ON_COMMAND(CM_EDITINSERTOBJECT, OnInsertObject)
 ON_MESSAGE(WM_OCEVENT, OnOcEvent)
END_MESSAGE_MAP()

int CMDIChildOCF::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 OCFHelper = new TOleWin(m_hWnd);
 OCFHelper->OnCreate();

 return CMDIChildWnd::OnCreate(lpCreateStruct);
}

void CMDIChildOCF::OnDestroy()
{
 CMDIChildWnd::OnDestroy();

 OCFHelper->OnDestroy();
 delete OCFHelper;
 OCFHelper = 0;
}

void CMDIChildOCF::OnLButtonDown(UINT nFlags, CPoint pt)
{
 if (!OCFHelper->OnLButtonDown(pt.x, pt.y, nFlags))
 CMDIChildWnd::OnLButtonDown(nFlags, pt);
}

void CMDIChildOCF::OnLButtonDblClk(UINT nFlags, CPoint pt)
{
 if (!OCFHelper->OnLButtonDblClk(pt.x, pt.y, nFlags))
 CMDIChildWnd::OnLButtonDblClk(nFlags, pt);
}

void CMDIChildOCF::OnSize(UINT type, int cx, int cy)
{
 OCFHelper->OnSize();

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 35

 CMDIChildWnd::OnSize(type, cx, cy);
}

void CMDIChildOCF::OnUpdateInsertObject(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(GetOcApp() && OCFHelper->GetOcView());
}

void CMDIChildOCF::OnInsertObject()
{
 OCFHelper->EditInsertObject();
}

LRESULT CMDIChildOCF::OnOcEvent(WPARAM wParam, LPARAM lParam)
{
 return OCFHelper->OnOcEvent(wParam, lParam);
}

Figure 22 - The implementation of the OCF-enabled class CMDIChildOCF.

With the two classes CMDIFrameOCF and CMDIChildOCF, now you derive you own classes from
them, like this:

class CMainFrame : public CMDIFrameOCF {
 // ...
};

class CMyChildWnd : public CMDIChildOCF {
 // ...
};

and use them without worrying about OLE. All the OLE-related stuff is caught and handled by the
base classes. Let’s take a look at what is inside the OCF helper objects. Class CMDIFrameOCF
uses a helper of type TOleFrameWin, declared like this:

class TOleFrameWin {

public:

 TOleFrameWin(HWND);

 void OnCreate();
 void OnDestroy();
 void OnActivateApp(BOOL);
 operator HWND() const {return Hwnd; };

protected:

 HWND Hwnd;
};

The purpose of this class is to create an object to encapsulate OLE frame windows, allowing
straightforward access to OCF. The member functions of TOleFrameWin use the global function
GetOcApp to obtain an application-specific OCF object of type TOcApp, to which Create, Destroy
and Activate events are dispatched. The code for TOleFrameWin is shown in figure 23:

TOleFrameWin::TOleFrameWin(HWND hwnd) : Hwnd(hwnd) {}

void TOleFrameWin::OnCreate()

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 36

{
 // Hand our frame HWND to OCF so it may send
 // OLE notifications/requests
 if (GetOcApp()) GetOcApp()->SetupWindow(Hwnd);
}

void TOleFrameWin::OnDestroy()
{
 // Release the OCF Application helper object
 if (GetOcApp()) GetOcApp()->Release();
}

void TOleFrameWin::OnActivateApp(BOOL active)
{
 GetOcApp()->EvActivate(active);
}

Figure 23 - The code for OCF helper objects used in MDI frame windows.

The OCF helper for MDI child windows is of type TOleWin, and is much more complicated then
its main frame helper counterpart. The class declaration is shown in figure 24.

class TOleWin : public TOcMenuDescr {
 public:
 TOleWin(HWND hwnd);
 virtual ~TOleWin();

 operator HWND() const {return Hwnd; };
 void SetWinMenu(const TOcMenuDescr& menuDescr);
 HMENU GetWinMenu() const {return HMenu; };
 HMENU GetMergedMenu() const {return MergedMenu; };

 //
 // Windows message handlers
 //
 void OnCreate();
 void OnDestroy();
 void OnSize();
 void OnPaint(HDC hdc, PAINTSTRUCT& ps);

 bool OnCommand(UINT);
 void OnInitMenuPopup(HMENU hMenu, int item);
 void OnInitMenu(HMENU hMenu);

 bool OnLButtonDown(int x, int y, UINT keyFlags);
 bool OnLButtonUp(int x, int y, UINT keyFlags);
 bool OnLButtonDblClk(int x, int y, UINT keyFlags);
 bool OnRButtonDown(int x, int y, UINT keyFlags);

 void OnActivate(bool);
 void OnSetFocus(HWND lostFocus);

 //
 // OCF event handlers
 //
 const char far* OnOcViewTitle();
 void OnOcViewSetTitle(const char far*);
 bool OnOcViewSetSiteRect(TRect far*);
 bool OnOcViewGetScale(TOcScaleFactor far*);
 bool OnOcViewPartInvalid(TOcPartChangeInfo far*);
 bool OnOcViewGetSiteRect(TRect far*);
 bool OnOcViewDrop(TOcDragDrop far*);
 LRESULT OnOcEvent(WPARAM wParam, LPARAM lParam);

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 37

 //
 // The following events are actually sent to the frame
 // However, the latter can delegate to the OLE Window
 //
 bool OnOcAppInsMenus(TOcMenuDescr far* sharedMenu);
 HMENU OnOcAppMenus(TOcMenuDescr far* menuDescr);
 HMENU OnOcAppRestoreUI();

 //
 // OLE UI Dialog methods
 //
 void EditInsertObject();
 void EditPasteSpecial();
 void EditConvert();
 void EditLinks();

 //
 // OCF Helper functions
 //
 bool Deactivate();
 void DeactivateParts();
 void SetSelection(TOcPart*);
 bool Select(UINT, TPoint& pt);
 void GetInsertPosition(TRect& rect);
 void InvalidatePart(TOcInvalidate invalid);
 bool PaintParts(HDC dc, bool erase,
 TRect& rect, bool metafile);
 void GetLogPerUnit(TSize&);
 void SetupDC(HDC dc, bool scale = true);
 bool OleShutDown();
 TOcView* CreateOcView(TRegLink*, bool isRemote,
 IUnknown* outer);

 //
 // Accessors
 //
 TOcDocument* GetOcDoc() {return OcDoc;}
 TOcView* GetOcView() {return OcView;}
 TOcRemView* GetOcRemView()
 {return TYPESAFE_DOWNCAST(OcView, TOcRemView);}
 bool SelectEmbedded();

 bool IsOpenEditing() const;
 bool IsRemote() const { return Remote; }

 //
 // extra user info
 //
 void* GetUserInfo() {return UserInfo;}
 void* SetUserInfo(void* ui);

 protected:
 HWND Hwnd;
 TOcDocument* OcDoc;
 TOcView* OcView;
 TOcScaleFactor Scale;
 TOcPart* DragPart;
 bool Remote;
 TRect Pos;
 bool ShowObjects;
 HMENU MergedMenu;
 void* UserInfo;
 OleClientDC* DragDC;
 TRect DragRect;
};

Figure 24 - The OCF helper class used in MDI child windows.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 38

Class TOleWin is derived from the OCF class TOcMenuDescr, which handles most of the details
of OLE menu merging. TOleWin has a member function for every Windows message that can
affect OLE objects linked or embedded in a window, plus functions to deal with every possible
OCF notification sent to containers. TOleWin also has the responsibility for instantiating the OCF
connector objects that manage linked/embedded objects, so it has data members pointing to
TOcDocument, TOcView, and TOcPart objects. The class also knows how to merge its menus
with those of in-place activated objects. If you think the class declaration was large, take a look
at its implementation (see figure 25). Hey, I didn’t say using OCF with MFC was trivial. I only
said it was possible!

TOleWin::TOleWin(HWND hwnd) : Hwnd(hwnd),
 Pos(0, 0, 0, 0),
 Remote(false),
 ShowObjects(true)
{
 OcDoc = 0;
 OcView = 0;
 DragPart = 0;
 DragDC = 0;

 //
 // Init menu related variables
 //
 MergedMenu = 0;
 HMenu = 0;
 memset(Width, 0, sizeof(Width));
}

TOleWin::~TOleWin()
{
 if (OcDoc)
 OcDoc->Close();

 if (OcView && !IsRemote()) {
 OcView->ReleaseObject();
 OcView = 0;
 }

 delete OcDoc;
}

void TOleWin::OnCreate()
{
 // Create OcDoc/OcView pair
 if (!OcView) CreateOcView(0, false, 0);

 // Hand OCF our window handle so it
 //may send OLE notifications/requests
 if (OcView) OcView->SetupWindow(Hwnd, IsRemote());
}

void TOleWin::OnDestroy()
{
 OleShutDown();
}

// Create View/Doc pair associated with OLE window
TOcView* TOleWin::CreateOcView(TRegLink* link,
 bool isRemote,
 IUnknown* outer)

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 39

{
 if (!OcDoc) OcDoc = new TOcDocument(*GetOcApp());

 if (!OcView) {
 TRegList* regList = link ? &link->GetRegList() : 0;

 // Create a remote view on the server document
 // if it embeded, else make a normal, container view
 if (isRemote)
 OcView = new TOcRemView(*GetOcDoc(), regList, outer);
 else
 OcView = new TOcView(*GetOcDoc(), regList, outer);

 Remote = isRemote;
 }
 return OcView;
}

void TOleWin::OnSize()

{
 // Inform the OCF View helper that we've been resized
 if (OcView) OcView->EvResize();
}

void TOleWin::OnPaint(HDC dc, PAINTSTRUCT& ps)
{
 bool metafile = GetDeviceCaps(dc, TECHNOLOGY) == DT_METAFILE;
 SetupDC(dc, !metafile);

 // make parts draw themselves
 PaintParts(dc, ps.fErase, TRect(ps.rcPaint), metafile);
}

// Method to call when OLE Window receives a WM_COMMAND with an
// id it does not support. This method handles the various
// OLE UI commands such as InsertObject or PasteSpecial
bool TOleWin::OnCommand(uint cmdID)
{
 switch (cmdID) {
 case CM_EDITINSERTOBJECT:
 EditInsertObject();
 break;

 case CM_EDITPASTESPECIAL:
 EditPasteSpecial();
 break;

 case CM_EDITCONVERT:
 EditConvert();
 break;

 case CM_EDITLINKS:
 EditLinks();
 break;

 case CM_EDITSHOWOBJECTS:
 ShowObjects = !ShowObjects;
 InvalidateRect(Hwnd, 0, TRUE);
 break;

 default:
 return false; // We did not handle the command!

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 40

 }
 return true; // We handled the command
}

void TOleWin::OnInitMenu(HMENU hMenu)
{
 EnableMenuItem(hMenu, CM_EDITINSERTOBJECT, MF_BYCOMMAND |
 ((GetOcApp() && GetOcView()) ? MF_ON : MF_OFF));
 EnableMenuItem(hMenu, CM_EDITCONVERT,
 MF_BYCOMMAND|((DragPart != 0) ? MF_ON : MF_OFF));

 uint mask = GetOcApp()->EnableEditMenu(meEnablePaste |
 meEnablePasteLink |
 meEnableBrowseClipboard |
 meEnableBrowseLinks,
 GetOcView());
 EnableMenuItem(hMenu, CM_EDITPASTE,
 MF_BYCOMMAND|((mask & meEnablePaste) ?
 MF_ON : MF_OFF));
 EnableMenuItem(hMenu, CM_EDITPASTELINK,
 MF_BYCOMMAND|((mask & meEnablePasteLink) ?
 MF_ON : MF_OFF));
 EnableMenuItem(hMenu, CM_EDITPASTESPECIAL,
 MF_BYCOMMAND|((mask & meEnableBrowseClipboard) ?
 MF_ON : MF_OFF));
 EnableMenuItem(hMenu, CM_EDITLINKS,
 MF_BYCOMMAND|((mask & meEnableBrowseLinks) ?
 MF_ON : MF_OFF));

 CheckMenuItem(hMenu, CM_EDITSHOWOBJECTS,
 MF_BYCOMMAND |(ShowObjects ?
 MF_CHECKED : MF_UNCHECKED));
}

// Method to call when OLE Window receives a WM_INITMENUPOPUP message
// (which is typically a hand-down from the frame window).
// Method takes care of enabling/disabling/checking etc. OLE related
// commands.
void TOleWin::OnInitMenuPopup(HMENU hMenu, int /*item*/)
{
 OnInitMenu(hMenu);
}

// Method to call when OLE Window receives a WM_LBUTTONDOWN message.
// Deactivates any active parts.
bool TOleWin::OnLButtonDown(int x, int y, UINT keyFlags)
{
 if (Deactivate())
 return true; // We handled the message...

 if (!DragDC)
 DragDC = new OleClientDC(*this);

 TPoint pt(x, y);
 DPtoLP(*DragDC, &pt, 1);
 return Select(keyFlags, pt);
}

bool TOleWin::Select(UINT KeyFlags, TPoint& point)
{
 if (!DragPart || !DragPart->IsVisible(TRect(point, TSize(1, 1))))
 SetSelection(GetOcDoc()->GetParts().Locate(point));

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 41

 if (DragPart) return true;
 return false;
}

// Method to call when OLE Window receives an WM_LBUTTONDBLCLK message.
// Activates the part if the mouse was clicked on an inactivate part.
bool TOleWin::OnLButtonDblClk(int x, int y, UINT modKeys)
{
 TPoint point(x, y);
 OleClientDC dc(*this);
 DPtoLP(dc, &point, 1);

 TOcPart* p = GetOcDoc()->GetParts().Locate(point);

 if (modKeys & MK_CONTROL) {
 if (p)
 p->Open(true);
 } else {
 SetSelection(p);

 if (p && p == GetOcView()->GetActivePart())
 p->Activate(false);

 GetOcView()->ActivatePart(p);
 }

 return true;
}

// Method to call when OLE window receives a WM_LBUTTONUP message
bool TOleWin::OnLButtonUp(int x, int y, UINT modKeys)
{
 if (DragPart) {
 TOcPartChangeInfo changeInfo(DragPart, invView | invData);
}

 if (DragDC) {
 delete DragDC;
 DragDC = 0;
 DragRect.SetNull();
 }

 return false;
}

// Method to call when OLE window receives a WM_ACTIVATE or
// WM_MDIACTIVATE message.
void TOleWin::OnActivate(bool active)
{
 GetOcView()->EvActivate(active);
}

void TOleWin::OnSetFocus(HWND /*hwndLostFocus*/)
{
 GetOcView()->EvSetFocus(true);
}

// Method to call when OLE Window receives a WM_RBUTTONDOWN message.
// Implements the Local Object menu (with VERBS) if the mouse was
// clicked on a part.
bool TOleWin::OnRButtonDown(int /*x*/, int /*y*/, uint /*keyFlags*/)
{

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 42

 return true;
}

// Method to call when OLE Window receives a WM_OCEVENT message.
// This method invokes a separate handler for the various OCF
// events. These in turn provide various default behaviours.
LRESULT TOleWin::OnOcEvent(WPARAM wParam, LPARAM lParam)
{
 switch (wParam) {
 case OC_VIEWTITLE:
 return (LRESULT)OnOcViewTitle();

 case OC_VIEWSETTITLE:
 OnOcViewSetTitle((const char far*)lParam);
 return (LRESULT)true;

 case OC_VIEWSETSITERECT:
 return (LRESULT)
 OnOcViewSetSiteRect((TRect far*)lParam);

 case OC_VIEWGETSCALE:
 return (LRESULT)
 OnOcViewGetScale((TOcScaleFactor far*)lParam);

 case OC_VIEWPARTINVALID:
 return (LRESULT)
 OnOcViewPartInvalid((TOcPartChangeInfo far*)lParam);

 case OC_VIEWGETSITERECT:
 return (LRESULT)OnOcViewGetSiteRect((TRect far*)lParam);

 case OC_VIEWDROP:
 return OnOcViewDrop((TOcDragDrop far*)lParam);

 default:
 return LRESULT(false);
 }
}

const char* TOleWin::OnOcViewTitle()
{
 static char title[100];

 if (IsWindow(Hwnd))
 GetWindowText(Hwnd, title, sizeof(title));
 return title;
}

void TOleWin::OnOcViewSetTitle(const char far* text)
{
 if (IsWindow(Hwnd)) SetWindowText(Hwnd, text);
}

bool TOleWin::OnOcViewGetScale(TOcScaleFactor* scaleInfo)
{
 if (scaleInfo) *scaleInfo = Scale;
 return true;
}

bool TOleWin::OnOcViewSetSiteRect(TRect far* rect)
{
 OleClientDC dc(*this);

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 43

 return DPtoLP(dc, (POINT*)rect, 2);
}

bool TOleWin::OnOcViewGetSiteRect(TRect far* rect)
{
 OleClientDC dc(*this);
 return LPtoDP(dc, (POINT*)rect, 2);
}

bool TOleWin::OnOcViewPartInvalid(TOcPartChangeInfo far* changeInfo)
{
 TRect rect(changeInfo->GetPart()->GetRect());
 rect.right++;
 rect.bottom++;

 OleClientDC dc(*this);
 LPtoDP(dc, (TPoint*)&rect, 2);
 InvalidateRect(Hwnd, &rect, true);
 InvalidatePart((TOcInvalidate)changeInfo->GetType());
 return true;
}

bool TOleWin::OnOcViewDrop(TOcDragDrop far*)
{
// we'll take any drop
return true;
}

// Displays the InsertObject dialog and allows user to
// embed an object [newly created or created from file]
void TOleWin::EditInsertObject()
{
 try {
 TOcInitInfo initInfo(OcView);
 if (GetOcApp()->Browse(initInfo)) {
 TRect rect;
 GetInsertPosition(rect);
 SetSelection(new TOcPart(*GetOcDoc(), initInfo, rect));

 OcView->Rename();
 InvalidatePart(invView);
 }
 }
 catch (TXBase& xbase) {
 MessageBox(Hwnd, xbase.why().c_str(), "EXCEPTION: InsertObject", MB_OK);
 }
}

// Displays PasteSpecial dialog and allows use to paste/pasteLink
// object current on the clipboard.
void TOleWin::EditPasteSpecial()
{
 try {
 TOcInitInfo initInfo(GetOcView());

 if (GetOcView()->BrowseClipboard(initInfo)) {
 TRect rect;
 GetInsertPosition(rect);
 new TOcPart(*GetOcDoc(), initInfo, rect);
 initInfo.ReleaseDataObject();
 }
 }

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 44

 catch (TXBase& xbase) {
 MessageBox(Hwnd, xbase.why().c_str(),
 "EXCEPTION: PasteSpecial", MB_OK);
 }
}

void TOleWin::EditConvert()
{
 GetOcApp()->Convert(DragPart, false);
}

void TOleWin::EditLinks()
{
 GetOcView()->BrowseLinks();
}

bool TOleWin::SelectEmbedded()
{
 return DragPart != 0;
}

void TOleWin::InvalidatePart(TOcInvalidate invalid)
{
 if (GetOcRemView())
 GetOcRemView()->Invalidate(invalid);
}

bool TOleWin::Deactivate()
{
 if (DragPart && DragPart->IsActive()) {
 SetSelection(0);
 return true;
 } else {
 return false;
 }
}

void TOleWin::DeactivateParts()
{
 // Deactivate the embedded parts
for (TOcPartCollectionIter i(OcDoc->GetParts()); i; i++) {
 TOcPart& p = *i.Current();
 p.Activate(false);
 }
}

bool TOleWin::OleShutDown()
{
 if (IsRemote()) {
 TOcRemView* ocRemView = GetOcRemView();
 if (IsOpenEditing())
 ocRemView->Disconnect();
 } else {
 if (OcView) OcView->EvClose();
 }
 return true;
}

void TOleWin::SetSelection(TOcPart* part)

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 45

{
 if (part == DragPart)
 return;

 // Invalidate old part
 TOcPartChangeInfo changeInfo(DragPart, invView);
 if (DragPart) {
 DragPart->Select(false);
 DragPart->Activate(false);
 OnOcViewPartInvalid(&changeInfo);
 }

 // Select and invalidate new one
 DragPart = part;
 changeInfo.SetPart(DragPart);
 if (DragPart) {
 part->Select(true);
 OnOcViewPartInvalid(&changeInfo);
 }
}

void TOleWin::GetInsertPosition(TRect& rect)
{
 OleClientDC dc(*this);

 // Default to 0.5" from viewport origin
 rect.left = rect.top = 0;
 rect.right = GetDeviceCaps(dc, LOGPIXELSX) >> 1;
 rect.bottom= GetDeviceCaps(dc, LOGPIXELSY) >> 1;

 LPtoDP(dc, (TPoint*)&rect, 2);

 // Embedded rect is in pixels
 rect.left = rect.Width();
 rect.top = rect.Height();
 rect.right = rect.bottom = 0;
}

// Get the logical unit per inch for document
void TOleWin::GetLogPerUnit(TSize& logPerUnit)
{
 HDC dc = GetWindowDC(0); // Screen DC
 logPerUnit.cx = GetDeviceCaps(dc, LOGPIXELSX);
 logPerUnit.cy = GetDeviceCaps(dc, LOGPIXELSY);
 ReleaseDC(0, dc);
}

void TOleWin::SetupDC(HDC dc, bool scale)
{
 SetMapMode(dc, MM_ANISOTROPIC);
 TPoint scrollPos(0, 0);

 // Adjust for scrolling here
 // ...

 SetWindowOrgEx(dc, scrollPos.x, scrollPos.y, 0);
 if (!scale) return;
 SetViewportOrgEx(dc, Pos.left, Pos.top, 0);

 TSize ext;
 GetLogPerUnit(ext);
 SetWindowExtEx(dc, ext.cx, ext.cy, 0);

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 46

 ext.cx = GetDeviceCaps(dc, LOGPIXELSX);
 ext.cy = GetDeviceCaps(dc, LOGPIXELSY);

 ext.cx = (int)(((uint32)ext.cx * Scale.SiteSize.cx +
 (Scale.PartSize.cx >> 1)) / Scale.PartSize.cx);
 ext.cy = (int)(((uint32)ext.cy * Scale.SiteSize.cy +
 (Scale.PartSize.cy >> 1)) / Scale.PartSize.cy);

 SetViewportExtEx(dc, ext.cx, ext.cy, 0);
}

bool TOleWin::PaintParts(HDC dc, bool, TRect&, bool metafile)
{
 TRect clientRect;
 TRect logicalRect;

 GetClientRect(Hwnd, &logicalRect);

 if (IsRemote()) {
 GetWindowRect(Hwnd, &clientRect);
 clientRect.Offset(-clientRect.left, -clientRect.top);
 } else {
 clientRect = logicalRect;
 }

 TPoint scrollPos(0, 0);

 if (!metafile)
 DPtoLP(dc, (TPoint*)&logicalRect, 2);

 for (TOcPartCollectionIter i(GetOcDoc()->GetParts()); i; i++) {
 TOcPart& p = *i.Current();
 if (p.IsVisible(logicalRect) || metafile) {
 TRect r = p.GetRect();
 r.Offset(-scrollPos.x, -scrollPos.y);
 p.Draw(dc, r, clientRect, asDefault);

 if (metafile)
 continue;

 // Paint selection
 //
 if ((p.IsSelected() || ShowObjects) &&
 r.Width()>0 && r.Height()>0) {
 TPoint pts[5] = {TPoint(r.left, r.top),
 TPoint(r.right, r.top),
 TPoint(r.right, r.bottom),
 TPoint(r.left, r.bottom),
 TPoint(r.left, r.top)};
 Polyline(dc, pts, sizeof(pts)/sizeof(pts[0]));
 }
 }
 }

 return true;
}

// Sets and returns previous user-defined pointer which
// can be stored along with the OCF helper.
void* TOleWin::SetUserInfo(void* ui)
{
 void* previous = UserInfo;
 UserInfo = ui;
 return previous;

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 47

}

// Hands a menu handle and menu description to the OCF helper
// object so the latter can handle OLE menu merging on behalf
// of the window.
void TOleWin::SetWinMenu(const TOcMenuDescr& menuDescr)
{
 HMenu = menuDescr.HMenu;
 if (HMenu)
 memcpy(Width, menuDescr.Width, sizeof(Width));
 else
 memset(Width, 0, sizeof(Width));
}

// Merge the container's menu in OLE's menu handle
bool TOleWin::OnOcAppInsMenus(TOcMenuDescr far* sharedMenu)
{
 // If we don't have a menu handle to merge, return false
 if (!HMenu) return false;

 // If we've merged into OLE's menu already, don't bother remerging
 if(MergedMenu) return true;

 // Merge the container menu in OLE's menu
 MergeContainerMenu(*sharedMenu, *this);
 return true;
}

// Handles OC_APPMENUS, a request to set a new menu bar
// We return the handle so the frame may set the menu.
HMENU TOleWin::OnOcAppMenus(TOcMenuDescr far* menuDescr)
{
 // If OLE does not pass a handle, hand our original menu
 if (!menuDescr->HMenu) {
 MergedMenu = 0;
 return HMenu;
 }

 return MergedMenu ? MergedMenu : menuDescr->HMenu;
}

// When asked to restore the UI, we'll return our own menu handle and
// clear out any memory of the merged OLE menu handle.
HMENU TOleWin::OnOcAppRestoreUI()
{
 MergedMenu = 0;
 return HMenu;
}

// Merges source menu popups into the destination menu.
// SrcOwnsEven determines whether the source or destination
// own the even or odd entries within the menu.
static bool MergeMenu(MenuDescr& dst, const MenuDescr& src,
 bool srcOwnsEven)
{
 int dstOff = 0;
 int srcOff = 0;

 for (int i=0; i<MENU_GROUP_COUNT; i++) {
 if ((!(i%2) && srcOwnsEven) || ((i%2) && !srcOwnsEven)) {
 // If the current location is owned by the source, there should
 // not be anything there from the destination already.

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 48

 if (dst.Width[i]) {
 // However, if the entries are occupied,
 // should they be removed/deleted - or
 // should we just append ours?
 }

 // If source has something to merge
 if (src.Width[i]) {
 // Iterate through the source's menu items
 int insertCount = 0;
 for (int j=0; j<src.Width[i]; j++) {
 uint state = GetMenuState(src, srcOff+j, MF_BYPOSITION);

 // Validate source menu item
 if (state == uint(-1))
 break;

 // Retrieve string
 char str[256];
 GetMenuString(src, srcOff+j, str, sizeof(str),
 MF_BYPOSITION);

 // If it's a popup, we'll share the handle
 uint idOrPopup = 0;
 if (state & MF_POPUP) {
 state &= (MF_STRING|MF_POPUP);
 HMENU sub = GetSubMenu(src, srcOff+j);
 idOrPopup = UINT(sub);
 } else {
 idOrPopup = GetMenuItemID(src, srcOff+j);
 }

 // Insert destination menu
 if (GetMenuItemCount(dst) <= dstOff+j)
 AppendMenu(dst, state|MF_BYPOSITION, idOrPopup, str);
 else
 InsertMenu(dst, dstOff+j, state|MF_BYPOSITION,
 idOrPopup, str);

 insertCount++;
 }

 // Update dst. width by # of new entries we've added
 dst.Width[i] += insertCount;
 }
 } else {
 // Here, if src.Width[i] == -1, we
 // could delete the destinations entries
 }

 // Update offset by width of entries just processed.
 srcOff += src.Width[i];
 dstOff += dst.Width[i];
 }

 return true;
}

// Merge so that source (container) owns the even entries
bool MergeContainerMenu(TOcMenuDescr& dst,
 const TOcMenuDescr& src)
{
 return MergeMenu(*((MenuDescr*)&dst),
 ((MenuDescr)&src), true);
}

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 49

// Merge so that source (server) owns the odd entries
bool MergeServerMenu(TOcMenuDescr& dst, const TOcMenuDescr& src)
{
 return MergeMenu(*((MenuDescr*)&dst), *((MenuDescr*)&src), false);
}

// Prompts user for a filename using Common Dialog
bool GetOpenFileName(HWND owner, const char* filter, char* fileName,
 int size, DWORD flags)
{
 OPENFILENAME ofn;
 memset(&ofn, 0, sizeof(ofn));
 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = owner;
 ofn.lpstrFilter = filter;
 ofn.lpstrFile = fileName;
 ofn.nMaxFile = size;
 ofn.Flags = flags;
 return GetOpenFileName(&ofn);
}

// Prompts user for a filename using Common Dialog
bool GetSaveFileName(HWND owner, const char* filter, char* fileName,
 int size, DWORD flags)
{
 OPENFILENAME ofn;
 memset(&ofn, 0, sizeof(ofn));
 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = owner;
 ofn.lpstrFilter = filter;
 ofn.lpstrFile = fileName;
 ofn.nMaxFile = size;
 ofn.Flags = flags;
 return GetSaveFileName(&ofn);
}

// Array of OCF dispatch Ids and string
#define OC_AND_STR(oc) {oc, #oc}
static struct {
 WPARAM ocId;
 char* ocStr;
} OcEventStr [] = {
 OC_AND_STR(OC_APPINSMENUS),
 OC_AND_STR(OC_APPMENUS),
 OC_AND_STR(OC_APPPROCESSMSG),
 OC_AND_STR(OC_APPFRAMERECT),
 OC_AND_STR(OC_APPBORDERSPACEREQ),
 OC_AND_STR(OC_APPBORDERSPACESET),
 OC_AND_STR(OC_APPSTATUSTEXT),
 OC_AND_STR(OC_APPRESTOREUI),
 OC_AND_STR(OC_APPDIALOGHELP),
 OC_AND_STR(OC_APPSHUTDOWN),
 OC_AND_STR(OC_VIEWTITLE),
 OC_AND_STR(OC_VIEWSETTITLE),
 OC_AND_STR(OC_VIEWBORDERSPACEREQ),
 OC_AND_STR(OC_VIEWBORDERSPACESET),
 OC_AND_STR(OC_VIEWDROP),
 OC_AND_STR(OC_VIEWDRAG),
 OC_AND_STR(OC_VIEWSCROLL),
 OC_AND_STR(OC_VIEWPARTINVALID),
 OC_AND_STR(OC_VIEWPAINT),
 OC_AND_STR(OC_VIEWLOADPART),
 OC_AND_STR(OC_VIEWSAVEPART),

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 50

 OC_AND_STR(OC_VIEWCLOSE),
 OC_AND_STR(OC_VIEWINSMENUS),
 OC_AND_STR(OC_VIEWSHOWTOOLS),
 OC_AND_STR(OC_VIEWGETPALETTE),
 OC_AND_STR(OC_VIEWCLIPDATA),
 OC_AND_STR(OC_VIEWPARTSIZE),
 OC_AND_STR(OC_VIEWOPENDOC),
 OC_AND_STR(OC_VIEWATTACHWINDOW),
 OC_AND_STR(OC_VIEWSETSCALE),
 OC_AND_STR(OC_VIEWGETSCALE),
 OC_AND_STR(OC_VIEWGETSITERECT),
 OC_AND_STR(OC_VIEWSETSITERECT),
 OC_AND_STR(OC_VIEWGETITEMNAME),
 OC_AND_STR(OC_VIEWSETLINK),
 OC_AND_STR(OC_VIEWBREAKLINK),
 OC_AND_STR(OC_VIEWPARTACTIVATE),
 OC_AND_STR(OC_VIEWPASTEOBJECT)
};

char* GetOcString(WPARAM id)
{
 for(int i=0; i<sizeof(OcEventStr)/sizeof(OcEventStr[0]); i++)
 if (id == OcEventStr[i].ocId)
 return OcEventStr[i].ocStr;

 return "OC_????";
}

Figure 25 - The code for the OCF helper class used by an MDI child window.

Class TOleWin uses 2 smaller helper classes: OleClientDC and MenuDescr, shown in figure 26.

// Encapsulates a clientDC configured for OLE operations
class OleClientDC {

public:

 OleClientDC(TOleWin&, bool scale = true);
 ~OleClientDC() {ReleaseDC(HWnd, Hdc);}

 // HDC conversion operator for convenience
 operator HDC () const {return Hdc;}

protected:

 HDC Hdc;
 HWND HWnd;
};

inline OleClientDC::OleClientDC(TOleWin& win, bool scale)
 :HWnd(win), Hdc(GetDC(win))
{
 win.SetupDC(*this, scale);
}

// Class encapsulating menu description for menu merging purposes
class MenuDescr : public TOcMenuDescr {

 MenuDescr(const TOcMenuDescr&);

public:

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 51

 MenuDescr(HMENU,
 int fileGrp = 0, int editGrp = 0,
 int contGrp = 0, int objGrp = 0,
 int winGrp = 0, int hlpGrp = 0);

 // HMENU conversion operator for easy handling
 operator HMENU() const {return HMenu;}
};

inline MenuDescr::MenuDescr(HMENU menu, int fileGrp, int editGrp,
 int contGrp, int objGrp,
 int winGrp, int hlpGrp)
{
 HMenu = menu;
 Width[0] = fileGrp;
 Width[1] = editGrp;
 Width[2] = contGrp;
 Width[3] = objGrp;
 Width[4] = winGrp;
 Width[5] = hlpGrp;
}

Figure 26 - A couple of minor helper helpers.

We’re still not done. The application object, derived from CWinApp, also uses a helper object to
register the app, to set OLE to use the default IMalloc memory allocator and handle a few other
details. The application helper is of class TOleInit (see figure 27).

class TOleInit : public TOleAllocator {

public:

 TOleInit(TRegList& regInfo,
 TComponentFactory callback,
 string& cmdLine, TRegLink* linkHead = 0,
 HINSTANCE hInst = ::_hInstance);
 ~TOleInit();

protected:

 TOcRegistrar* OcRegistrar;
 TOcApp*& OcApp;
};

// Initializes OLE to use default IMalloc allocator.
// Creates OCF helper objects
TOleInit::TOleInit(TRegList& regInfo,
 TComponentFactory callback,
 string& cmdLine, TRegLink* linkHead,
 HINSTANCE hInst) :
 TOleAllocator(0), OcRegistrar(0), OcApp(TheOcApp)
{
 // Initialize OCF objects: Create TOcRegistrar & TOcApp
 OcRegistrar = new TOcRegistrar(regInfo, callback, cmdLine,
 linkHead, hInst);
 OcRegistrar->CreateOcApp(OcRegistrar->GetOptions(), OcApp);
}

// Cleans up the OCF helper objects
TOleInit::~TOleInit()
{
 // Free the Registrar
 //

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 52

 delete OcRegistrar;
}

Figure 27 - The application helper object.

Having seen the code for the helpers, let’s go back to where your application creates its main
frame window. Having the new CMDIFrameOCF-derived class, you will create an instance of it
your app’s InitInstance function, like this:

BOOL CMyMdiApp::InitInstance()
{
 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();
 m_pMainWnd = pMainFrame;
 return TRUE;
}

The main frame window will in turn instantiate windows of class CMyChildWin:

void CMainFrame::OnFileNew()
{
 CMyChildWin* pChildWin = new CMyChildWin;
 pChildWin->Create("An OLE container window",
 WS_CHILD | WS_VISIBLE |
 WS_OVERLAPPEDWINDOW |
 WS_CLIPSIBLINGS,
 rectDefault, this);
}

The application class will need a couple of OCF helpers to finish the job, to support OLE
registration and OLE memory allocator initialization. For OLE registration you must set up a
table with basic information that OLE will store in the system registry. Using OCF you set this list
up using some pre-defined macros, like this:

// OLE Registration information
REGISTRATION_FORMAT_BUFFER(100)
BEGIN_REGISTRATION(AppReg)
 REGDATA(clsid, "{2C27A720-D323-101B-96B9-7A117CB6AF38}")
 REGDATA(progid, "MFCMDI.ProgID.1")
 REGDATA(description, "MFC Sample using OCF")
END_REGISTRATION

Then you must setup a couple of OCF variables to manage the registration information and the
app’s OCF helper. Your app will need to instantiate a helper of type TOleInit, deleting it in the
destructor (see figure 28).

// OCF variables
TRegLink* RegLinkHead = 0;
TOleInit* OleInit = 0;

BEGIN_MESSAGE_MAP(CMdiApp, CWinApp)
 //{{AFX_MSG_MAP(CMdiApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

MSJ – BOCOLE and OCF Ted Faison 10/31/94 Page 53

CMdiApp::CMdiApp()
{
 try {
 OleInit = new TOleInit(::AppReg,
 /*Factory Callback*/0,
 string(m_lpCmdLine),
 ::RegLinkHead,
 m_hInstance);
 }
 catch (TXBase& xbase) {
 MessageBox(GetFocus(), “OCF helper initialization error”,
 "OLE error", MB_OK);
 }
}

CMdiApp::~CMdiApp()
{
 delete OleInit;
}

Figure 28 - The OLE registration information and OCF helpers in an MFC application.

And there you have it: MFC with OCF, in a nutshell (some nutshell!). Don’t get the idea that
Borland created OCF with the purpose of seducing MFC programmers. The point is that OCF is
uncoupled from OWL to the extent that it can be used without OWL. Even though it is non-trivial
to use OCF without OWL, there still may be reasons to use OCF in a Visual C++ app.
Remember that to get OLE support with Visual C++ you must develop code using MFC. Assume
you are writing a DLL that needs to be very small and also support OLE. You don’t want to create
a full-blown MFC program, so OCF may be the way to go. Borland has tons of sample programs
that show how to use OCF both with OWL and without OWL, to ease some of the pain.

