
Interactive Component-Based Software Development with Espresso Ted Faison Page 1

Interactive Component-Based Software
Development with Espresso∗∗

Ted Faison
tedfaison@msn.com

Faison Computing Inc.
Irvine, CA 92606

Sept 1997

Abstract

There are a number of competing component models in use today. Most are language-independent, but also
platform-dependent and not designed to support a tool-based development paradigm. Espresso is a new
platform-independent component model whose primary goal is to make it easy for tools to manipulate and
compose Espresso components interactively during the software development process. This paper describes
the salient features of Espresso, including the Espresso Notation and the Espresso Language. Because
Application Builder tools are such an essential part of any project based on Espresso components, the paper
also gives highlights of the visual programming tool we are building.

1 Introduction

Component-based software today is largely based on models that require code-intensive work to produce
programs. Tool-based development using software assistants has long been recognized [1] as a means to
produce higher quality systems, with fewer defects and in less time. To maximize their effectiveness, tools
must aid in the visual composition of components, without the need to generate code. Tool-based
interconnectivity requires a component model that is able to expose interface features and capabilities,
preferably at run-time and without support from external “description” files. Component models in use
today, such as COM, OpenDoc and CORBA don’t support run-time interconnectivity. To connect two
components together requires multiple steps, most of which require human intervention, because the
interconnection requirements of components is not advertised in a way that facilitates tool-based
approaches.

Espresso is a new component model based on the JavaBeans specification. The model was designed
specifically to make a tool-based approach to software development as powerful as possible. Espresso
components support a visual composition development model: components are connected together in a
graph using mouse gestures, without code generation. Espresso components can be nested, therefore a
graph of components can be enclosed in another Espresso component. By supporting nesting to arbitrary
levels, low level components can be combined into larger and larger components until an entire application
component is developed.

Software development using Espresso emphasizes rapid visual programming using pre-built components
obtained from a user repository. While the Espresso model allows developers to write their own code using
traditional edit-compile-link techniques, rapid development is predicated on the availability of a library of
pre-built components, much like the TTL libraries used by hardware designers. Visual programming is a
powerful notion that has been studied for some time. Chang describes some of the early systems exploring
visual programming based on objects [2]. Other component-based environments, such as Audition [3],
require the developer to interact with a language-based class system to produce components. Espresso
component graphs are built interactively using live binary components retrieved from a repository,
supporting an incremental development model where everything is live during the design phase.

∗ This research is supported by the US Air Force, Rome Laboratory, under Contract Number F30602-96-C-
0205.

Interactive Component-Based Software Development with Espresso Ted Faison Page 2

Espresso components are also designed to be distributable over the World Wide Web and to be loadable
using browsers in use today. Espresso supports run-time functional querying, allowing designers to search
the Web for components supporting a given set of features. Having located useful components, users can
download them and install them into their local repository with a single mouse click. Espresso components
are very lightweight and are generally quite small, making Web transfers short. Downloaded components
are also self-installing, so users aren’t faced with a complicated and machine-dependent installation
process.

2 Espresso Goals

The Espresso model has one fundamental goal: to simplify software development through a model that
supports a tool-intensive approach using visual component composition. Espresso components need to be
easily distributable, allowing developers to use the Web to locate components and build non trivial local
repositories of components. To minimize transmission time, Espresso components must be lightweight. To
this end the Espresso overhead, defined as the extra baggage attached to a software product to turn it into
an Espresso component, is designed to be very small. The exact amount of overhead depends on the
number of Espresso features embedded in a component, but for typical deployed component the overhead
is smaller than 1 KB.

Because the Web is the primary distribution medium, it is important for Espresso components to be
platform independent, so one component fits all machines, or at least a wide variety of machines. This
requirement is satisfied by using Java as the sole development language. To support Application Builder
tools to the greatest extent, Espresso components are entirely self-contained units. All meta-data regarding
internal composition, interfaces to the outside world, internal graphical layout, and optionally even source
code and debugging support information, is stored inside each Espresso component.

This meta-data is made available both at compile time and run time. The requirement to keep overhead as
low as possible requires executable code, necessary for deployment, to be “detachable” from development
and test information, such as symbol tables and source code. Meta-data includes support for versioning,
manufacturer information, legal copyrights and trademarks, component composition, component
interconnections and component inheritance. Regarding this last feature, Espresso supports dynamic
inheritance, which allows the ancestor of a component to be changed at run-time. All constituents of an
Espresso component can be modified at run-time, allowing developers to work with live components
during all phases of design, testing and deployment.

3 The Espresso Component Model

The Espresso model was designed to facilitate a tool-based development model, in which developers create
software systems using gestures such as mouse clicking, dragging and dropping. The model is not designed
for a specific application domain. Espresso-based developments environments are quite different from
others, such as Janus [4], Argo [5] or ADM [6]. The Espresso model is not a design notation, nor a software
development assistant, rather an implementation specification. Espresso components are implementations
of a particular design and Espresso-based environments are tools designed to build components or complete
applications as graphs of components. Espresso systems are displayed as visual graphs, and programmers
reason about systems in terms of the relationships between components. The emphasis is shifted from code
production to component composition. Users have the option of injecting their own source code into a
system by packaging it as a special Espresso User Component.

Espresso components may either be visible or not at run-time. Visible objects include user interface
controls, which receive input from the user, and graphical objects, which display other pictorial information
that doesn’t require user interaction. Non-graphical components are useful for incorporating business logic

Interactive Component-Based Software Development with Espresso Ted Faison Page 3

into an application, and include objects like component collections (e.g. hash tables and vectors), event
timers, data filters and adaptors. A Software Component Engineering Development Environment (SCEDE)
tool using Espresso could both create a GUI application, such as the client-side of a multi-tiered database
information system, or a non-GUI one, such as a matrix inversion algorithm.

Current commercial systems, like Borland Delphi [7] or Microsoft Visual Basic [8], are geared specifically
toward GUI applications, with support for database programming. Although the component models they
support (Borland VCL and Microsoft COM, respectively) are generic, they were designed primarily to
support user-interface components. To create non-GUI components, developers must resort to low-level
traditional code development.

Espresso components are not a solution for all programming situations. Being built in Java, Espresso
components can only go where Java goes. Because Espresso components are (currently) run in the
interpreted environment of the Java Virtual Machine (JVM), they are not suited for real-time applications.
Java microprocessors are under development now and will be available shortly. Machines using such
processors will be able to run Java code natively, alleviating the real-time restriction for Java.

Espresso components are also not currently adequate for life-critical systems, the limitation stemming from
the relative immaturity of the Java language, and not from the Espresso model itself. Because JVMs are
still in evolution, as is the Java language itself, there is the risk that undiscovered defects in the runtime
environment may be a source of instability.

Espresso components are designed to be composed together to create more powerful components. The
model itself doesn’t impose a development methodology, which can be top-down, bottom-up, by stepwise
refinement, etc. Two main types of developers are envisioned to be Espresso users: component producers
and consumers. Producers develop components for distribution or resale. Consumers are typically
application developers who use pre-packaged components. Component development can use both a top-
down or bottom-up approach. Large components can be broken down into collection of smaller
interconnected ones recursively down the smallest component. Small components can be interconnected to
yield larger ones recursively up to a full application component. Note that composition is entirely a run-
time activity, which means Espresso projects can scale up indefinitely. Component interconnection requires
no source code production, editing, compiling or linking. Connections are entirely dynamic and persistent.

Being Java incarnations, Espresso components can be designed as stand-alone applications or embedded in
Web pages. When created as Web applets, Espresso components deliver active content to end-users, with
no programming overhead: applet support is provided by the Java run-time environment. Security is
controlled by the Java Security Manager. Espresso components can also be packaged in special envelopes,
for delivery over the Web and installation into user repositories. HTML-document-embedding and Web
delivery are essential properties of Espresso components, because they enable components to do away with
the need for a proprietary distributed object database, in favor of standard technologies such as http, wide
area search engines and Web browsers.

4 Espresso Diagrams

The structure of an Espresso component, as well as the structure of a graph of components, can be
expressed both graphically and textually. Graphical presentations use the Espresso Notation, in which parts
and relationships between parts use a set of standard symbols. Textual presentations use the Espresso
Language to describe components and graphs of components.

4.1 The Espresso Notation

Espresso components are denoted by boxes. Connection points with the outside world are called ports, and
denoted by an arrow. The notion of port as a component connection point is not new [9], but Espresso ports

Interactive Component-Based Software Development with Espresso Ted Faison Page 4

possess qualities that differentiate them from older types of ports. Espresso ports are intelligent, in the
sense they contain methods a tool can call to get a description of every port feature at runtime. They also
act as contract advertisements, governing the behavior not of an entire component, but of collections of
logically related methods. Contracts as software interface specifications are well defined in the literature
[10] [11]. All Espresso components possess one fundamental port: the Descriptor Port, which provides
Application Builder tools with connectivity data, versioning info and meta-data regarding internal structure
and internal layout. Program control flows in and out of a component through ports. The direction of flow
is denoted by an arrow. Program control flow shows the direction of method calls. Data may or may not
flow in the same direction as program flow. Figure 1 shows a simple Espresso component.

Figure 1 - A simple non-graphical Espresso component.

Components are named with a label. When the label is outside the box, it appears usually above the upper
left-hand corner. What appears inside the box depends on the Espresso component. Graphical components,
like buttons and spreadsheets, can show their runtime presentation. Figure 2 shows a simple user interface
component.

Figure 2 - A graphical component at design-time.

Non graphical components can display a graph of the components aggregated inside them. Figure 3 shows
a non-graphical component containing 3 components.

Figure 3 – A composite Espresso component.

StartButton

Descriptor Port

A

Descriptor Port Espresso
Component

Port XYZ

A (super-component of B, C, D; descendent of E)

Descriptor Port

E (ancestor of A)

C (sub-component of A)

D

B

Start

Interactive Component-Based Software Development with Espresso Ted Faison Page 5

Components placed inside another component are called sub-components. The outer component is called
the super-component. When one component is derived from another, the former is called the descendent,
the latter the ancestor. Ancestors are drawn inside their descendent with a double border. Espresso does
not support multiple inheritance at the component level. Components are not required to have an ancestor,
and may have no more than one.

The display of an Espresso component is the responsibility of SCEDE tools, so the Espresso Notation must
be known by tool developers. Espresso components can give information to tools regarding the layout and
interconnection of their sub-components and ancestor. Layout information is provided in the form of a
graphic representation, including the size and position of each component, the paths of their connecting
lines, the position of their ports, plus embellishments such as textual annotations and embedded pictures.
Figure 4 shows an example of an Espresso component displayed with this rich formatting information.

Figure 4 – A richly formatted Espresso presentation.

Text and pictures may be embedded arbitrarily in an Espresso component. Component boxes may be filled
with a solid color or a background image. It is important to emphasize that all the information required to
display the component in Figure 4 is extracted from the component itself, with no intervening help from
external descriptor files. The Espresso model doesn’t prescribe a particular structure for SCEDEs. It only
guarantees that information required to reconstruct the visual representation of a component will be
available from the component at run-time in a standard format.

4.2 The Espresso Language

Graphical Espresso representations are designed for human consumption. For complex graphs of
components, it is sometimes more convenient to have a word description. We are developing the Espresso
language to be a simple a textual representation of the structure of Espresso components and the structure
of Espresso graphs. The language is meant to convey the structure – not the visual layout – of Espresso
systems. In this sense, the Espresso Language conveys only a subset of the information displayed by the
Espresso Notation, which conveys rich layout information. The Language is designed as a sub-product of
the Espresso Notation, primarily for the benefit of Application Builder tools like verifiers and testers, for
which textual data is much easier to process than graphics. Although it is possible to translate an Espresso
Language script into a complete functional component graph, the lack of layout information would make
such a system difficult to use in a visual programming sense. We anticipate the use of Espresso Language
as one-way only: language scripts will be generated from an Espresso component, and not vice-versa.

The Espresso Language conveys two basic types of information: the internal structure of a component, and
the structure of a graph of components. A number of keywords are defined, such as Component, Port and

MyTextSplitter

Uppercase Filter

RTFTextSource
Port

Text
Format
Controller

Text case
control

FontControl
Port

RTFTextData
Port

Stream Splitter

UnicodeTextData
Port

Interactive Component-Based Software Development with Espresso Ted Faison Page 6

Line to denote standard items in an Espresso graph. The following is a fragment of the Espresso Language
script that defines the component shown in Figure 4.

Component MyTextSplitter: TextSplitter
 Port RTFTextSource: RTFInputPort
 Line void setRTFText(String theText): Input
 Interlocutor: void
 …
 Line Integer getBufferSize(): Input
 Interlocutor: void
 End
 Port FontControl: FontControlPort
 …
 End
 …
End

Figure 5 – A sample Espresso Language fragment.

A complete description of the Espresso language is beyond the scope of this paper, however the language
uses a simple syntax, is easy to read and is entirely descriptive in nature. The keyword Interlocutor
used in Figure 5 denotes the component, port and line to which a line is connected. Espresso Language
scripts describe structure and relationships – not function. The language is not a full-fledged programming
language: there is no support for conditional control, variables, loops or other features available in
traditional programming languages. The Espresso Language describes a component map, showing how
components are interconnected, not what they do or how they work.

5 Connecting Components Together

Espresso components use the concept of port to represent connection pathways with the outside world.
Ports are groupings of items called Lines. Lines can be used for input or output and encapsulate individual
method calls into or out of a component. An Input port contains only Input Lines, an Output Port only
Output Lines. A port containing both Input and Output Lines is an I/O port. Ports contain groupings of
Lines associated with logically similar methods, i.e. methods that cooperate to support a non-trivial feature.

All Espresso components contain a basic port called the Descriptor Port, an Input Port containing
methods that provide versioning, connectivity and manufacturer information. Ports are the sole connection
point between Espresso components. Ports link components dynamically, providing at runtime the same
service as a traditional linkage editor. Using a tool, components can be connected together by their ports at
run-time, with no need to modify, compile or link any code.

Output ports possess an attribute called cardinality, which describes the number of inputs it can control.
Ordinarily, outputs have a cardinality of 1 or greater-than-1. The former ports are called unicast, the latter
multicast. When a multicast port is connected to multiple Input Lines, control is transferred sequentially
from the Output Lines to each of the attached Inputs. Ports are described using a formal notation [12], that
characterizes the sequence of control flow over its Input and Output lines, timing constraints,
pre/postconditions, and other information that allows a tool to verify the correctness of a port
interconnection.

Developers can use an Application Builder tool to connect ports together with a drag-and-drop mouse
gesture. To make the connection, the tool can interrogate each port participating in the connection for its
layout, and the precise description of each of its lines. The tool can then tell the ports to connect
themselves. Connecting two ports entails the interconnection of all compatible lines on each side of the
connection.

Interactive Component-Based Software Development with Espresso Ted Faison Page 7

Input Lines are implemented as references to Java Method objects. Output Lines are implemented as
references to Input Lines, as shown in Figure 6.

Figure 6 - The interconnection of an Output to an Input Line.

Outputs can be connected to nothing. Using a port with unconnected outputs may or not be allowable, as
determined by the owner component. When not allowed, the component may throw an exception or
generate an error when the line is accessed. The notation used to indicate two connected ports is a simple
line, as shown in Figure 7.

Figure 7 - Two interconnected ports.

Arrows indicate the nature of control flow over the interconnection. The line indicates two things: that the
two ports are completely compatible with each other, and that all the lines of one are connected to lines of
the other. Partially compatible ports will have a subset of their lines connected. To indicate which lines
participate in the connection, a Port Breakout notation is used, as shown in Figure 8.

Figure 8 - The Port Breakout notation.

Figure 8 shows two ports with only a single line (L2) connected. Arrows indicate the direction of each line.
The port breakout diagram for two compatible ports interconnected would show all the lines of one port
connected to lines of the other.

An important property of ports is polymorphism. If an output is connected to an input, the output doesn’t
know which actual Method will be called. The Input Line can map the call to any Method object, and if
the internal structure of a component is changed, mappings between Input Lines and Method Objects may
change, but the process is entirely transparent to any connected Output Lines. Polymorphism is an
important property, because it allows components to be insensitive to the internal structure of other
components. If the internal structure of a component is changed to the extent that it no longer supports a
given Input Line, then any connections to that Line are automatically removed.

Port B

Output Line Input Line

Method Object

Port 1 Port 2
BA

L3
L4
L5
L6

L3
L4
L5
L6

L2
L1L1

Port A
BA

Component A Component B

Interactive Component-Based Software Development with Espresso Ted Faison Page 8

Because ports represent contracts, they can also encode specific contract patterns. For example, many
transactions between components are asynchronous by nature: One component A issues a command C1 to
another component B, then continues with its internal activity. When B has completed the command, it
notifies A by sending the command C2. This arrangement encodes the pattern of a feedback loop, where the
commands C1 and C2 are inseparable. Espresso encodes such a pattern in an I/O port that appears as in
Figure 9, using port breakout notation:

Figure 9 - An I/O port used to encode a feedback loop pattern.

Other lines may also participate in the feedback loop connection. Multiple feedback loops might also be
encapsulated in a single pair of ports.

The ability of ports to contain self-descriptive information allows an Application Builder tool to ensure
Connectivity Integrity, i.e. the verification and validation of the connectivity of a graph of Espresso
components. Compatibility between connected lines guarantees that parameters are passed and returned
correctly both in type and number. For testing purposes, debuggers also have the ability to place special
Watch objects on a connection, to monitor the data flowing over it.

6 Component packaging

How a component is packaged conditions the way it can be distributed. A transparent package, which
exposes all the internal features, is not acceptable because it provides no protection for intellectual property
associated with the component. A successful packaging scheme must allow component developers to
expose only as much information from a component as they wish.

Espresso allows developers to create multiple versions of a component, each exposing a different amount
of information. For example, a manufacturer might distribute a free version of a component openly on the
internet, while a second version might be available for a fee. The first version would expose little or no
information about the component’s internal structure, the second might provide a full graphical
representation of sub-components used, and also provide source code and other debug support information
to aid in the reuse of the component.

Espresso components generally contain graphs of sub-components, which in turn contain more sub-
components. Because there is a certain overhead in each method call made over a port connection, a
complex component may incur a non-negligible amount of overhead. To alleviate this problem, the
component’s structure can be flattened, meaning a designated set of its sub-components, including all of
them, can be recompiled into a single component. Method calls across port connections are replaced with
direct Java method calls, removing all port overhead.

Flattening has the side effect of removing Espresso structure, so it is advantageous for deployment, but not
for development. Flattening is generally a one-way technique used to pass from the development to the
deployment phase. Flattening requires that all the source code for the sub-component in the flattening set is
available, because it must be extracted and rearranged. Except for their external ports, flattened components
contain only source code, so they become opaque in Espresso terms. Opaqueness can be a desirable feature,
when a manufacturer wishes to provide a component version that has full debugging support without giving

Port 2

C2

C1

Port 1
B

A

Interactive Component-Based Software Development with Espresso Ted Faison Page 9

away the details of its internal sub-component structure. Flattening is also useful for components for which
performance and/or size is a premium.

7 Packaging Existing Code

It is unrealistic to believe a complete software system can be built exclusively with pre-built components
from a library. Digital designers use libraries of integrated circuits, but most circuits contain additional
logic – often called glue -- implemented using lower level components like resistors, transistors and
capacitors. Espresso supports the same concept, by allowing developers to write their own source code and
package it as a component, called a User Component. These components are indistinguishable on the
outside from ordinary Espresso components. The difference is on the inside: rather than contain a graph of
sub-components, they simply contain compiled code. User components are the escape mechanism that frees
developers from total dependency on pre-built components. No matter how rich a library is, there will
always be the possibility that a development scenario will need logic that no component supports.

To develop a User Component, the developer derives a class from the Espresso superclass EspressoBean,
provided in the Espresso toolkit. This class provides support for the basic Espresso features, such as ports,
sub-components and ancestors. Using a Java compiler, the code is compiled into an Espresso component,
which can then be installed into the user’s component repository and used like any other component,
including being redistributed over the internet and debugged using Espresso tools.

8 Debug support

The Espresso model allows code debugging using traditional techniques. Espresso supports a special
Debug component that contains all the information required by debuggers, including a component’s source
code and symbol table. The component to which a Debug component is attached is called the owner.
Because Debug components are useful only before deployment, we have designed them to be optional: they
can be attached or detached from their owner. Being able to detach them before deployment is important
because Debug components tend to be large, often larger than their owner. They also carry information that
the manufacturer may not wish to distribute.

9 Espresso Development Environments

We are designing a development environment for Espresso components, called Software Component
Engineering Development Environment (SCEDE, pronounced seed). It is a graphical environment that
promotes a visual programming style. Developers select components from a tool palette and drop them in a
Layout Editor. Components are connected together by using a tool to draw a line between their ports.
Existing visual environments, such as the IBM VisualAge Parts system [13], rely on code generation to
build and interconnect components. The Espresso model supports incremental component composition
without code generation, eliminating the need to compile and link code. Figure 10 shows what an early
prototype of the Espresso SCEDE looks like.

Interactive Component-Based Software Development with Espresso Ted Faison Page 10

Figure 10 - An early prototype of the Espresso SCEDE.

When components are placed in the Layout Editor, they become live: they process data passed to them and
support connections with their neighboring components. Graphical components also maintain a screen
appearance that is similar to their final appearance at runtime.

The early SCEDE does not directly support the generation of User Components. Those must be created
using Java code, then compiled with an off-the-shelf compiler. Once compiled, User Components can be
used as regular components, including installation in the Component Repository and on the Component
Tool Palette.

10 Espresso Phases

Projects developed using Espresso have 3 phases: development, testing and deployment. Components have
internal states to facilitate software production. During development, components assume the design-time
state. In this state, visual components appear as they will at run-time. Non-visual components appear as
boxes whose interior is filled with the graphical layout of their internal components – when this
information exists. At design-time, components are live: they process data fed to them and produce output
on the screen where necessary. In the design-time state, the developer can visually interact with
components to reposition and resize them. Components can also be customized through their properties and
port connections.

During testing, components are switched to their run-time state. In this mode visual components assume
their run-time appearance and non-visual components disappear from the screen. Components are
obviously live in their run-time states. Components are switched from one state to the other by the SCEDE.
In the run-time state, components are not allowed to be repositioned or resized by the SCEDE. Properties
and port connections are frozen in the run-time state: they can be changed programmatically by the running
components themselves, but not interactively using the SCEDE tools.

Interactive Component-Based Software Development with Espresso Ted Faison Page 11

11 The Espresso Repository

If the goal of Espresso is to build the infrastructure for component-based development, a prerequisite to
Espresso-based software development is the availability of many types of components, numbering in the
hundreds. We use a Component Repository to manage these components. The repository is a hierarchical
structure of components, whose structure is user-defined. Users can classify components anyway they find
convenient. A Button component might be classified as a User Interface component. If a user has many
dozens of user interface components, it might be advantageous to create different categories under the User
Interface category, such as Standard, Extended, Database Controls, etc. Figure 11 shows the hierarchy for a
simple repository.

Component Repository
User Interface

Standard
Button
BlueButton
Listbox
Icon Listbox
Grid

Database Controls
Edit
Label
Listbox

Security
User Authentication
Transaction Control
Encryption

Figure 11 - The hierarchy of a small Espresso repository.

The SCEDE we are developing possesses a simple Component Repository. It allows components to be
installed using drag-and-drop gestures. Components in the repository can be browsed, and their properties
can be adjusted. Components stored in the repository are serialized components. Loading a component
from the repository entails deserializing it and instantiating it in the SCEDE Layout Editor workspace.

An important activity in component-based development is searching and finding components that satisfy
certain user criteria. We support the distribution of Espresso components over the internet. By packaging
them in special constructs called Envelopes, Espresso components can be embedded on Web pages called
Spec Sheets. The role of Spec Sheets is to contain searchable keywords that allow users to locate
components of interest. Figure 12 shows the basic layout of a Spec Sheet.

Interactive Component-Based Software Development with Espresso Ted Faison Page 12

Figure 12 - A spec sheet with an embedded software component.

Search results returned by a standard search engine are normally ranked according to the match score of the
text query. By searching for combinations of software component ports or other salient features,
components can be located rapidly that support the required functionality.

Developers download components by clicking on their envelope. The envelope contains the component and
a description of the envelope contents. Multiple components can be downloaded in a single envelope with a
single http transaction. The SCEDE opens the envelope, extracts the components from it and installs those
components into the user’s Component Repository.

Developers can also create their own Spec Sheets to make their components available on the Web. An
Envelope generator in the SCEDE packages components together and creates an envelope for them. The
Spec Sheet is developed using traditional HTML document editors, and a hyperlink is embedded to the
Espresso envelope. Using the Web as the distribution medium for Espresso ensures the widest availability
possible today.

12 Conclusion

Espresso builds on many of the new strengths of the Java language, such as serialization, properties, and
run-time meta-data. Java not only makes the Espresso implementation simpler, but also provides a measure
of platform independence. The Espresso model provides a means to accelerate and simplify the software
development process. Success of the component-based development model is predicated on the availability
of a substantial number of pre-built components. Our current effort has the goal of creating a minimal set of
components, to demonstrate the overall capabilities of the model, but we intend to subsequently embark on
the development of a much larger set.

Text

Embedded software component,
wrapped in a special delivery
envelope.

Text

HTML Spec Sheet

Interactive Component-Based Software Development with Espresso Ted Faison Page 13

References

1 Kaiser, G., Feiler, P., Popovich, S. Intelligent Assistance for Software Development and

Maintenance, IEEE Software, May, 1988, 40-49.
2 Chang, S. et al. Principles of Visual Programming, Prentice Hall, 1990.
3 Drinnan, A., Morton, D. Advantages of a Component-Based Approach to Defining Complicated

Objects, OOPS Messenger, Jan 1993, 36-45.
4 Fischer, G. Domain-Oriented Design Environments. Proceedings of the 7th Knowledge-Based

Software Engineering Conference, 204-213.
5 Robbins, J., Hilbert, D., Redmiles, D. Extending Design Environments to Software Architecture

Design, Proceedings of the 11th Knowledge-Based Software Engineering Conference, 63-72.
6 Benner, K. Addressing Complexity, Coordination and Automation in Software Development with

the KBSA/ADM, Proceedings of the 11th Knowledge-Based Software Engineering Conference,
73-83.

7 Delphi Technical White Papers, Borland on-line document,
http://www.borland.com/delphi/papers/.

8 Visual Basic 5.0 Evaluators Guide, Microsoft on-line document,
http://www.microsoft.com/visualtools/egs/visualbasic.htm.

9 Nierstrasz, O., Gibbs, S., Tsichritzis, D. Component-Oriented Software Development,
Communications of the ACM., Sept 1992, 160-165.

10 Helm, R., Holland, I., Gangopadhyay, D. Contracts: Specifying Behavioral Compositions in
Object-Oriented Systems, Proceedings of OOPSLA ECOOP ’90, 169-180.

11 Meyer, B. Object-Oriented Software Construction, Prentice Hall, 1988.
12 Faison, T. Formal Component Interface Specifications in Espresso, Sept 1997, on-line document,

http://www.faisoncomputing.com
13 Visual Builder Parts Reference, IBM on-line document,

http://as400bks.rochester.ibm.com/cgi-bin/bookmgr/bookmgr.cmd/books/cppvbr00/contents.

